AFRL-IF-RS-TR-2006-14
In-House I nterim Report
January 2006

h

HYBRID ARCHITECTURES FOR EVOLUTIONARY
COMPUTING ALGORITHMS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

AFRL-IF-RS-TR-2006-14 has been reviewed and is approved for publication

APPROVED: Is/

DANIEL BURNS
Project Engineer

FOR THE DIRECTOR: /sl

JAMES A. COLLINS
Deputy Chief, Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE omB o e o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
JANUARY 2006 In-House Interim, Mar 2003 — Mar 2005

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

HYBRID ARCHITECTURES FOR EVOLUTIONARY COMPUTING C - N/A

ALGORITHMS PE - 62702F
PR - 459T
TA - HA

6. AUTHOR(S) WU - EC

Daniel Burns

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFTC

525 Brooks Road

Rome New York 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFTC

525 Brooks Road

Rome New York 13441-4505

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-14

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Daniel Burns /IFTC/(315) 330-2335/ Daniel.Burns@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This report documents interim progress for an in-house project aimed at identifying, developing and evaluating applications of
evolutionary computing methods to hard optimization problem test cases on a single PC computer, a cluster of computers, and
hardware FPGA platforms. We surveyed evolutionary computing literature and chose to focus on the Generic Algorithm, GA. We
had the GA test three case problems, Non-Linear Coupled Ordinary Differential Equation, ODE, Parameterization, the DNA Code
Word Library Generation, and the Networked Senior Power Management Policy Problem. The first test problem used an ODE bio-
model for Antigen-Antibody binding that was of interest to a Pl for a DARPA SIMBIOSYS program we managed. We developed
prototype optimization software tools in three programming environments, Labview, Matlab, and compiled C, and demonstrated
speed-ups on the order of 100-1000x by moving to C. We parallelized the C codes using Message Passing Interface and
demonstrated good linear speed-ups on a cluster. Our GA solution for the second test case problem, DNA Code Word Library
Generation, was also parallelized, and was faster than any algorithm found in the literature. Finally, we began developing a
hardware accelerated version of GA for the DNA Code Word Problem as a first step toward a distributed hardware implementation.

14. SUBJECT TERMS
Genetic Algorithm, Optimization, Ordinary Differential Equation, parallel, distributed, Field

15. NUMBER OF PAGES
51

Programmable Logic Array 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

e (0] [T 0= | SPR 1
Accomplishments from 4/01/03 10 8/19/05ccoueiieiiiieiieiiee e s 1
Tasks to be addressed iN NEXE PEIIOUcveiiiieiiee e nrees 2
Publications/Briefings DUring this PEriOdccoviiiiiiiiiiiiiicie e 2

Description of ACCOMPIISNMENTS........c.ooiiiiciee e 3

Y011 U (o O o] =11 {11) PSPPI 3
Literature Search, State-of-the-Art, Gap ANAIYSIS........ccccoviieiieiiie e 3
Labview version of GA optimizer and Ag/Ab binding bio-model portedto C..........cccccoveneee. 5
MatLab GA and DIO-MOEIS ..o 10
MatLab v2 bio-model POrted t0 €ooiuiiiiiie e e 11
Evaluation of speed, accuracy, convergence, and scaling performances of the Labview,
MatLab, and COMPIlEd C VEISIONScoouiiiiiieiiieie ettt 11
Evaluation of GEPASI Bio-model SImUIAtor ... 20
Java/OAA wrapped PC GA ODE Parameterizer version prepared as BioSpice agent. 20
Web Browser Interface PC GA ODE Parameterizer VErsionccocvvevvevveeiienenenenesennenns 21

Summary of work in Spiral 1 (PC platform) ... 22
Y o1 A (O 0] (= gl o] = 10 0] 1) PSS 22
GA ODE Parameterization ProbIem ..o 22
Island Model diStrDUIE GAooiiiieii e 24
DNA Code Word Library Generation Problem ..., 25
Application of distributed GA to Sensor Network Energy Management:...........cccccoceevvenenne. 28
Summary of work in Spiral 2 (Cluster platform)..........cccoeiiiiiin e 28
Spiral 3 (Hardware Accelerated Platforms)cccovveieieiieeie s 28

Summary of WOrK in SPIral 3.......c.ooiie e e 34
Remaining WOrk in SPIral 3ccvoiiiie e 34

FULUIE WOTK ...t ettt b ettt e b et et sbe et e e neesneenne e 34

ACKNOWIBAGEMENTS: ...t e st et e st et e e e e s re e beanbesneenraeeeanes 37

List of Appendices

ApPPendiX A. GECCO 2004 PAPETccveiuieieiieerieeieseesteeseesaesaesseessaessesseesseessesssessaessessesssesssennes 39

Appendix B. FNANO 2005 PAPEYoiiiiiiieiienieaie sttt sttt st sbe e saeeste e sseesseens 42

AppendiX C. GECCO 2005 PAPETccieiieeieiieesieeiesteesteeeeseesaessaessaessesseesseessesssesseessessesssesssesnes 44

List of Figures

Figure 1: Front Panel of GA optimizer tool solver in Labview Version.cccccceeeviveresieennenn. 6
Figure 2: Structure of Epitope-Paratope Bond Formation Modelccoooieiiiiiiiiicin, 7
Figure 3: Two Compartment Model Incorporating Steric Hindrances.........c.ccccovvevevvenvsciesinennn. 7
Figure 4: Front panel of equation ODE solver in LabView Version...........ccccvveveiveneeneninneene. 8
Figure 5: Speed Test_0, solution time of the initial population.............ccccccevveviiieiieicce e 12
as a function of the number of individuals in the initial population.cccccoviiiniiniiniinn, 12

Figure 6: Speed Test_1, solution time of the target population.ccooeeveniiiiniie e 13

Figure 7: Elapsed time for fitting task for the VErsions.c.cccceeveieiie i 14
Figure 8: Average maximum parameter fitting error for the Versions...........ccccvveriiieiienennens 15
Figure 9: Average number of generations for good fit for the versions.ccccccecvvveviveieenns 16
Figure 10: Elapsed time and Sum Err fitting different numbers of parameters (Cv1 version).... 16
Figure 11: Effect of parameter search range on performance..........ccccovvvivereeiesieeseeseseese e 17
Figure 12: Effect of fitting with relaxed accuracy reqUIremMent............cccoooeveeiiicnnieiesee e 18
Figure 13a. Fitting all data points, N0 NOISE.cccveiiiiiieiieec e 19
Figure 13c. Fitting every 10th data point, N0 NOISE.ccuiiiiiiieiieiie e e 19
Figure 13b. Fitting all data points, 20% random NOISE.cccoeieereeresiiereeresee e se e e e see e 19
Figure 13d. Fitting every 10th data point, 20% random NOISE...........cevererreeneniie e 19
Figure 14: Outline of web browser interface for GA ODE Parameterizer.ccccovevvvivernennns 22
Figure 15: Jumpshot time profiling of Farming Model distributed GA (26 processors, beyond
R 0LC=0 B T o] F= (=T LU OSSR 23
Figure 16: Speed-up curve for best tuning of the Farming Model distributed GA...................... 24
Figure 17: Speed-up curve for distributed Island Model GA ODE Parameterizer..............c....... 25
Figure 18: Multiple run data analysis tool front panel display.ccccciviiiniiniiniiiieies 26
Figure 19: Comparison of Markov, GA, and stochastic DNA Code Word Library Generation
MELNOAS. ...t b ettt et e s b et e et e Rt e ebe e beene e be e beeneenreas 27
Figure 20: Levenstein Matrix CalCulationccccviieiieiiiieicce e 30
Figure 21: Levenstein matrix calculation array implementation.cccccevcerienieninie e 31
Figure 22: Upper level functional block diagram of fitness evaluator.ccccccoeeviveiecienenn, 32
Figure 23: Maximum numbers that can be calculated in Levenstein matrix cells..................... 33
Figure 24: Higher level function block diagram of GA optimization FPGA hardware core. 34
Figure 25: Speed-up and resources for the various platforms considered by this project. 36
List of Tables
Table 1 Invited Speakers, IF EC INtEreSt GrOUP.......ccviiverierieeieseese e e erie et 4
Table 2 Primary GA OptimizZer PArameterS.ccueuiiierieierie ettt see e ste et e e 6
Table 3 Primary Bio-model Parameters.ccoviieiieiiiie e se e ee e sie e sae e 9
Table 4 Characteristics of various GA fitter/bio-model Versions.c.ccoocevennieiiniiciennn 11
Table 5 Performance and Scaling metrics for GA bio-model fitter..........c.cccooevieiiiieiiecee, 11
Table 6 % of Runs Reaching Maximum Of GENerations...........cccccvevereeieeneniesiene e 14
Table 7 Parameters being fit for sets of bars in FIgure 9. ..o 17
Table 8 Time profiling study of GA/DNA Code Word Library Generation application showing
time consumed by subroutine (produced with GNU gprof).cccccveviieiiieie i 29
Table 9 Synthesis report showing resource utilization and expected speed. Minimum period:
12.37NS (B0.8IMHZ) ...ttt bbb bbbt 32

Project Goals

This project will investigate novel computing architectures that facilitate evolutionary
computing (EC) methods such as Genetic Algorithms (GAs) and Genetic Programming (GP) that
are being applied by an increasing number of researchers to hard, NP-complete combinatorial
optimization problems in a number of diverse problem domains. One goal is to determine
whether EC based algorithms offer any advantages over more classical methods, especially in the
context of parallel and hybrid (or heterogeneous) hardware/software implementations that are
aimed at achieving extreme solution time speed-ups and problem size scaling. A focus of this
work will be to evaluate the performance of these methods running on both modest conventional
computer platforms as well as on a new heterogeneous computer that uses a field programmable
logic array at (FPGA) each node in a cluster of computers. The results of this research may lead
to improved solution engines for NP-complete optimization problems that are relevant to a
number of IF mission area applications. Another goal is to develop new optimization tools for
parameterizing and optimizing systems making use of bio-models relevant to current DARPA
programs managed by AFRL/IF.

Accomplishments from 4/01/03 to 8/19/05
Spiral 1: (PC platform - complete)

. Translated Labview version GA optimization tool and Antigen/Antibody (Ag/Ab)
binding bio-model to C

« Obtained MatLab based Genetic Algorithm Optimization Toolbox from North Carolina
State University, integrated MatLab bio-models from Purdue University SIMBIOSYS
PI and also with C version bio-model derived from Labview version.

. Ported Purdue MatLab bio-model to C, integrated with C version.

. Evaluated the speed, accuracy, convergence, and scaling performances of the Labview,
MatLab, and C versions of GA Ordinary Differential Equation (ODE) Parameterization
tool

. Evaluated Virginia Tech GEPASI bio-model simulation and fitting tool

« Developed Java Open Agent Architecture (OAA) wrapped compiled C version for
contribution as BioSpice agent under the DARPA BIOCOMP program

« Developed web browser interface version for used by remote, no-programmer users

« Established Evolutionary Computing Interest Group at IF and hosted 7 speakers.

Spiral 2: (Cluster platform - complete)

« Developed Distributed Farming and Island Model GA applications to Non-Linear ODE
parameterization (C/Message Passing Interface (MPI)), evaluated performance scaling
Vvs. # processor nodes.

« Developed 2" application of Distributed GA to DNA Code Word Library Generation
problem and demonstrated linear speed-up performance scaling vs. # processors nodes.

« Developed 3" application of GA to Networked Sensor Power Management Problem

. Visited AFIT, Wright State University, Virginia Tech. to discuss collaborations.

Spiral 3 (Hardware Accelerated Platforms)
« Collaborated with Impulse, Inc. evaluating Co_Developer C to VHDL translator tool
« Preliminary design completed for GA optimization algorithm FPGA core written in
VHDL for hardware implementation aimed at extreme speed-up.

. Final design completed in VHDL for Levenstein Matrix systolic array calculator
hardware accelerator for fitness function evaluation speed-up for DNA Code Word
Library Generation Problem.

Tasks to be addressed in next period

« Complete GA core in VHDL for FPGA hardware implementation

. Integrate GA core and DNA Code Word Library generator fitness function evaluator in
one FPGA hardware accelerator

« Evaluate and purchase hardware acceleration platforms for Notebook PC PCMCIA
card, prototype GA DNA Code Word Library FPGA version, do notebook prototype.

. Evaluate and purchase FPGA board for 1 node of the IFTC G5 BIOCOMP cluster,
prototype GA DNA Code Word Library FPGA, do prototype on that platform.

« Evaluate HHPC multiple FPGA version of GA DNA Code Word Library Generator.

Publications/Briefings During this Period

D.J. Burns and K.N. May, “On Parameterizing Models of Antigen-Antibody Binding Dynamics
on Surfaces — a Genetic Algorithm Approach and the Need for Speed”, Proceedings of the
Genetic and Evolutionary Computing Conference — GECCO 2004, Seattle, WA, June, 2004, Vol.
1, pp. 497-498. (Workshop and open poster session papers, see Appendix A).

D. J. Burns, K.N. May, and M. Bishop, “Parallel Genetic Algorithm for DNA Codeword Library
Design”, 2" Conference on Foundations of Nanoscience — Self-Assembled Architectures and
Devices, Snowbird, Utah, Apr. 2005, pp. 128-129. (Poster paper, see Appendix B).

D.J. Burns, K.N. May, M. Bishop, “DNA Code Word Library Generation Using a Parallel
Genetic Algorithm”, Workshop on Military and Security Applications of Evolutionary
Computing, Genetic and Evolutionary Computing Conference — GECCO 2005, Washington,
D.C., June, 2005. (see Appendix C).

K.N. May, “Genetic Algorithm Solvers for Non-Linear ODE Parameterization and DNA Code
Word Library Generation on PC and Cluster Platforms”, Undergraduate Student Workshop,
Genetic and Evolutionary Computing Conference — GECCO 2005, Washington, DC, June, 2005.
(Invited presentation).

D. Burns, “Air Force Application of Evolutionary Computing Algorithms”, Genetic and
Evolutionary Computing Conference — GECCO 2005, Washington, DC, June, 2005. (Regular
session briefing, not published in Proceedings).

Briefed to 2003 Scientific Advisor Board in Advanced Computer Architecture during ACA focus
area poster session. \\Lfs-projects\Projects\SAB_2003\SAB_Focus_Area_Sessions\ Advanced.
Computing.Architectures\Poster.Session\ ACA.30.Hyb_Arch_Evol_Comp_Meth.Burns.VF.ppt

Description of Accomplishments

The work in this period has completed two of the three major tasks, i.e. identifying,
developing and evaluating applications of evolutionary computing methods to test case problems
run on both a single PC computer and on a cluster of computers. We also made a good start on
the third spiral that will pursue further speed-ups by moving to embedded hardware
implementations, a Field Programmable Logic Array (FPGA). In the first spiral we surveyed
evolutionary computing literature and chose to focus on the Genetic Algorithm. We developed
prototype optimization software tools in three programming environments (Labview, MatLab,
and compiled C), and evaluating their relative performances solving a test case problem. The
test case problem was parameterizing a particular bio-model consisting of a set of Non-Linear,
coupled Ordinary Differential Equations (ODE). This problem is of wide interest to workers in
certain biologically oriented DARPA program we are managing. In the second spiral we
parallelized the C code version using MPI to run on a distributed cluster computer. We also
applied the tool to solve two additional optimization problems of interest to others in IF, namely
the DNA Code Word Library Generation Problem, and Networked Sensor Power Management
Policy Problem, and we evaluated its performance relative to the best examples of other methods
in the literature. Finally, in the third spiral, we began developing a hardware accelerated version
of a GA optimizer as applied to the DNA Code Word Problem, as a first step toward a
distributed hardware implementation.

Most of the work reported here was performed in-house at IFTC by Dan Burns and Kevin
May (Clarkson Summer Engineering Aide summer 2003, 2004, 2005 and winter break 2003,
2004). The preliminary distributed Island Model GA and FPGA core design was assisted by Dr.
Larry Merkle, Rose Hulman Institute of Technology (2004 Summer Visiting Faculty Research
assignment in AFRL/IFTC with Mr. Burns), and the Networked Sensor Power Management
Policy application was done by Dr. Qinru Qiu, Binghamton University (2005 Summer Visiting
Faculty Research assignment in IFTC with by Mr. Burns).

The remainder of this report discusses the technical work accomplished during this period
on the three main tasks, and Appendices follow with copies of publications generated by this
project.

Spiral 1: (PC platform)
Literature Search, State-of-the-Art, Gap Analysis

A standard literature search was done which identified a large number of references on
the development and use of Evolutionary Computing algorithms for various optimization
problems in many domains. One of the largest and widest ranging meetings on the subject is the
Genetic and Evolutionary Computing Conference, which Mr. Burns attended in 2003-2005. The

meeting includes separate days of tutorials and workshops in addition to the concurrent regular
sessions, and these helped us to rapidly assess the state-of-the-art in this area. The 2004 and
2005 meetings also included a workshop specifically on Military and Security Applications of
Evolutionary Computing. This workshop was organized by a leading worker in the field, David
Goldberg/University of Illinois at Urbana-Champaign (UIUC), with support by AFOSR (Maj. J.
Vasquez). Mr. Burns AFRL/IFTC and Ms. Misty Blowers AFRL/IFEC have since helped
organize this workshop in 2004 and 2005, respectively. We also started an informal
Evolutionary Computing Interest Group in IF that met at least 6 times to hear the invited
speakers shown in Table 1, and to discuss both in-house and contractual applications of EC at IF.
These speakers were sponsored by the Chief Scientist Lecture Series or the Information Institute,
except Dr. Ridder, who was sponsored the Navy, and Maj. Vasquez, whose visit was sponsored
by AFOSR. We also visited and consulted workers in the WPAFB area who have been working
on EC topics, including with Prof. Gary Lamont/AFIT http://en.afit.edu/hpc/evolution.html , who
has applied GA’s to multi-objective optimization problems, and Dr. John Gallagher/Wright State
University, whose interest IS compact and mini-pop GA’s
http://carl.cs.wright.edu/ehrg/e_home/e_home.html .

Table 1 Invited Speakers, IF EC Interest Group

Speaker Topic Date
Dr. Kenneth De Jong, Taxonomy of Evolutionary Computing Methods 2 Dec 2003
George Mason University
Dr. David Goldgerg/UIUC | The Design of Military Innovation: Ruggedized GAs for Robust, 13 Jan 2004
Maj. J. Vasquez/AFOSR | Rapid Solutions to Military Problems
Dr. Jae C. Oh/Syracuse Evolutionary Computations, Genetic Rule-based Systems, and 23 June 2004
University Evolutionary Games for Real-word and Military Applications
Dr. E. Wells/U. AL Reconfigurable Hardware and Hybrid Architecture approaches for 19 July 2005

solving Evolutionary Computing Optimization Problems and
performing Process Scheduling

Dr. Jeff Ridder and Jason | Mission Planning for Joint Suppression of Enemy Air Defenses 27 July 2005
Handuber/System of Using a Genetic Algorithm
System Analytics, Inc.

Dr. A. Stoica/JPL Evolutionary Hardware at NASA 3 Aug 2005

Our search of the literature and discussions with numerous workers in the field of EC
taught us that the workhorse EC algorithm is the Genetic Algorithm (GA). We decided to
continue to focus on this well studied, widely used algorithm in our in-house work. We also
investigated sources of computer codes (e.g. http://www.aic.nrl.navy.mil/galist/src/#C , and
identified gaps. We did download and make use of an experimental MatLab GA library from
NCSU http://www.ie.ncsu.edu/mirage/ GAToolBox/gaot/. Subsequently, MathWorks announced
a similar product. Although we would gladly have used existing codes, we could find no
downloadable examples of a distributed Island Model GA, or of a one FPGA core GA, so we
developed our own. We did identify at least 4 projects that have studied or developed GA codes
for FPGA, but they were either multiple chip implementations, or not written in VHDL. We are
presently pursuing collaborations with two of these, one at Wright State University, and one at

the University of Alabama, Huntsville and NASA. We also determined that at this writing there
is no published work demonstrating a distributed GA (or any EC algorithm) implemented in
hardware on a cluster containing FPGA’s at each processor node.

Labview version of GA optimizer and Ag/Ab binding bio-model ported to C
GA fitter description

A Labview version of a Genetic Algorithm based optimization tool was developed in-
house at AFRL/IFTC, and was coupled with a particular bio-model to form a parameterization
tool that could search for sets of parameters that fit the model to experimental data. That work
was done actually done as a part of the in-house component of our involvement in the DARPA
SIMBIOSYS and BIOCOMP programs. Under those programs we studied the software,
algorithm, and computing requirements being encountered by program Pls, and found that one of
the significantly under-addressed needs was for optimization tools, e.g. for parameterizing non-
linear ODE bio-models to fit experimental data. Another motivation was that AFRL/IFTC is
taking part in an AFRL level working group studying bioscience and technology and its
implications on the information area, and GA methods are indeed algorithms inspired by
biology.

The Labview software programming environment was used to develop the first version of
the GA fitter tool and bio-model tool because it is an icon based programming language which is
very efficient, mainly because programs are constructed as “Virtual Instruments”, with wiring
diagrams that consist of interconnected icons that implement a data flow architecture of
calculations to solve the problem. No line-by-line code is written, so there are no syntax errors,
making code development very efficient. The Labview language is also hierarchical.

The GA tool we wrote was inspired by generic GA concepts, e.g. as described in
Practical genetic algorithms by Randy L. Haupt & Sue Ellen Haupt, New York, Wiley, c1998.
Originally it was written as one integrated program, but for the purposes of this project it was
broken into two independent parts, the GA optimizer part, and the bio-model part, to that the
optimizer could be more easily be applied to different models. We included standard “simple
GA” features such selection mechanisms based on either rank or fitness, uniform random
crossover of genes during mating, low level mutations accomplished by gene bit flipping, a
fitness function to grade individuals, (in the ODE case the typical least squared difference
between measured and model simulations), elitism (keeping a subset of the best solutions from
generation to generation), etc. Figure 1 shows a front panel shot of the Labview GA optimizer.

The GA optimizer can be used by an operator entering parameters on the front panel, or it
can be called as a subroutine VI by a higher level program. A number of higher level programs
were also written to characterize the performance of the GA optimizer, e.g. by averaging the
results of several runs, or by running with different GA parameter settings. The primary GA
parameters that can be set with controls on the front panel are described in Table 2. It also has a
number of flags to control various operating modes, e.g. to easily set up to fit only some of the
genes, or restrict the range of bits that are mutated. The progress of runs is monitored by graphs
showing the best individual’s fitness vs. generation, and a histogram of the fitness values of the
current generation.

e Edt Operate Took @rowse Window Help

[S12] @ [1n] [150 roskaten rort_ |~ o~ -][65-]

4.0E+7 6. 0E+T B.OE+T

Figure 1: Front Panel of GA optimizer tool solver in Labview version.

Table 2 Primary GA optimizer parameters.

Name Description Typical Value
bits in each gene # bits in each gene 10

chromosomes # chromosomes 1

genes in each chromosome # genes in each chromosome 9

individuals in initial population # individuals in initial population 100-10,000

individuals in target population # individuals in running population 100-10,000

keepers

individuals used as parents to produce
children for next generation

10-20% of population

max # generations

Maximum # of generations allowed

20-1,000

mating strategy

method used to rank individuals for selection for
mating

fitness based

crossover strategy

method used to pass genes to next generation

random (gene by gene)

% mutations

total # bits mutated in all but best individual
after mating

<10

Bio-Model Description:

The bio-model first used was based on an early version of a model being developed by
Dr. Ann Rundell, a DARPA SIMBIOSYS program PI at Purdue. The description in this section
was derived from the 1st quarterly status report of that contract (JON E1170068, F30602-01-2-
0539).

The model shown in Figure 2 captures the fundamental kinetics of epitope-paratope bond
formation between antibodies fixed to a surface and mobile Antigen encountering the surface.
This model was derived from the law of mass action for the stoichiometric reaction that occurs

between each antigen epitope and antibody paratope.
G:J:I: o og
5 F "'%{

Xm — | Complex | _ | Complex |_ | Complex g Crosslink

dt Formation Dissociation Crosshnk Dissaciation

&) _ kAR k (N-1k,xR; + 2k

P le gy — KX - —lEax ke + 2K Xy
association rate dissociation rate

wvaleney crosslinking association and dissociation rates

* Modelbased up on workhy Sulzer and Perelson, Wofsy and Goldstein,
Paekand Schramm,DeLisi

Figure 2: Structure of Epitope-Paratope Bond Formation Model

The model was programmed in such a way that the number of epitopes is variable: thus
the program generates the appropriate number of differential equations and solves them. The
model was simulated with reasonable parameter values that were obtained from literature. The
model of antigen capture was extended to include a two compartment model of antigen binding;
a two compartment model of antigen binding which explicitly incorporates effects of steric
hindrances (Figure 3). Steric hindrance effects model the exclusion of surface area available for
binding as Antigen binds and covers the surface.

= Accounts for spatial disird ution of ep tiop es 3
and antd edies after initial b inding event

* Incorporates steric hindrances n<n<< N

i, -8

9C; _ 50 (0 —x)4k, C

i = 7t (G -+ C)

dx; 5

d_to = ﬂ(km(cl_xﬂ)"'kgcl_ Nkp%Re + kx|

dx

—Ll=DMepoRy - kom - (n-UHDkxRa + 2k,%;

2 < (a3 R — T — -+ DRy + (DK sz

dx
d_t“ = Hnkx,Riea - kX,

Figure 3: Two Compartment Model Incorporating Steric Hindrances

The Labview version was implemented using a couple of different ODE solvers for the
equations. This first version (Lv0) made use of an ODE solver built into Labview which parsed
text strings describing the equations. This proved too slow. The second one used a simple
home-brew Euler ODE solver that we wrote, and it was much faster. Figure 4 shows the front
panel of the equations solver. The curves on the right are binding and release concentration vs.
time plots for simulated experimental data (actual) and fit or calculated data (best).

Operate Tools Browse Window Help el
@ [130t Application Fart |+][5~][0=~ |[€5~]
— 4]
Elsﬁlai of best fit éroiess
For best individual anly
=0 o pat
1l 7.00E-14 -, 4.000€
6.00E-14 - e
5.00E-14]
4.00E-14 - i 2.000E
3.00E-14 i
2.00E-14
1.00E-14 - [ty 0.0000
o
o
] ; !) 000 +0 - ! !] ; ' 5 tod
D.00E+0 1.00E-2 Z.00E-2 300E-2 4002 5.00E-Z 0.00E+0 1.00E2 200E2 300E2 400E2 S.00E-2 1154
I : ; b, tes
%0, test O {ackual) generation # last gen best fitness gen time (s) xt, kest O (actual) B L
'33 | '2 e | binding & release curves b, e
%0, test 1 {actual) . JL.11 | xt, kest 1 {ackual)
x0, test 0 (hest) k{tman) ut, test 0 (best) b, tes
0, test 1 (best) BSIEL4 ut, test 1 (hest)
Ka kd Km Kq kx K-x E 1] R=Ah0 | |
arameter minfmasxfdz's]
vy O o.000e+0 | o.0o0e+o]f o.ooce+o| o.0o0e+olf o.oooe+of| o.ooce+olf S.ocoe+1)] S.oo0e-7ff e.540E-11 4, best 0 &l (actual) =
mas ON™57200E+5 | 6.000E+1)] 1.000E-G] 1.00CE-6)) 7.400E+12 | 6.000E+1]| 5.000E+1] 5.0006-7]) 6.540E-11 k, test 08 1 (best)
clta s.008E+2 || s.sscE-2| 9.7ese-7| o.7eeE-10]] 7.2z7E+0| s.esce-z| o.ooce+of o.oooE+o) o.oo0E+0
actual (FP) actual (binary)
chrm| 08" 10E+5 5] s.00e+1]3] 0.00e+0fe] 0.00E+0]8 3.73E+12 [5.00E+1]3] S.00E+1]g] 5.00E-7] 6.54E-11]| o™ =z si2] o]l ofl | ste]
e gene a 0
best (FP) best (hinary) |
O 4.12e+5)] 2.see+1]| o.ooe+o) o.ooe+of sese+izf soce+1] s.ooe+i]] s.oce-Ffl esee-1n]] off si4ff sos] of e suff
0 0
%o dif best vs actual
U" 0.39 -0.78 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 |
0
>
L4 | j_‘

Figure 4: Front panel of equation ODE solver in Labview version.

The bio-model parameters that typically are fit or can be varied physically in an
experiment are shown in Table 3. All of these parameters are assigned as genes in the GA and
can be fit.

Table 3 Primary Bio-model parameters.

Name Description Typical Value
ka initial association rate 4.9e+4
kd initial dissociation rate 3.9e-2
km transport coefficient between the two 1.0e-4
compartments due to diffusion
kg transport coefficient between the two 1.0e-8
compartments due to gravity
kx cross-linking association rate 3.7e12
kx- cross-linked dissociation rate 3.0el
D antigen diameter 5.0e-7
E antibody extension from surface 5.0el
R=Ab0 functional antibody surface density 6.5e-11

As can be seen, these parameters have values that span many orders of magnitude. They
are used as floating point numbers in the bio-model tool, but are used as binary numbers in the
GA tool (typically 10 bits, to enable fitting to less that 0.1% of the searched range). Scaling is
controlled by specifying a floating point min and max for each parameter. These and a number
of other parameters that are used by the GA and bio-model can be input either on front panel
controls or by reading a comma delimited Excel spreadsheet file.

A number of other software programs were also written to exercise the GA-model
combination. One of these was a ‘model explorer’ that allows one to scan 2 parameters over
selected ranges and calculate the maximum amount of binding at the end of the association
phase. Another is a ‘run manager’ that runs the GA fitting process several times and gathers
statistics about the results, as it is important that statements about the performance of GA’s be
made in terms of statistics gathered over many runs. Other programs were run that repeated
fitting runs for a chosen sets of GA parameter values, e.g. for different initial population sizes.

This Labview version (Lv1) was also ported to C (Cvl). The C version was developed
using the cygwin package (a Linux-like environment for Windows, www.cygwin.com) and the
GNU gcc compiler and make packages (www.gnu.org). Cv1l was written to take input at compile
time from two header files, one specifying GA parameters, and one specifying bio-model
parameters. It was also written so that some of the parameters could be passed in at run time as
arguments on the command line, so that it would not be necessary to recompile the program
when certain parameters were changed. Again several programs were written (some in Labview)
to control the exercising of this C version and for gathering statistical performance results over
many runs.

The performances of the Labview version (Lvl) GA-Model combination and of the port
to C version (Cv1) are covered in a later section of this report.

9

MatLab GA and bio-models

Two MatLab versions were programmed. Both versions used the MatLab based Genetic
Algorithm Optimization Toolbox (GAOT) obtained from North Carolina State University
http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/ to implement the GA fitter tool. The first
version (Mv1) used a bio-model ported to MatLab from Cv1 (previously ported from Lv1),
including the home-brew Euler ODE solver. The second version (Mv2) used a bio-model with
mode detail supplied by the PI of the Purdue SIMBIOSYS effort. Mv2 made calls to an ODE
solver built into MatLab. We made modifications to GAOT to introduce the same selection,
mating, and fitness evaluation functions used in the other versions.

Both of these versions worked, but they were very slow, e.g. taking on the order of a
second or more to evaluate the concentration vs. time curves for a single individual. This is too
slow to be of much use for parameter fitting or optimization runs that typically might require
hundreds or thousands of evaluations. It is worth noting here that the Purdue Pl used a method
for parameterizing the model that is probably a pretty typical practice. It involved fitting a
couple of parameters first, while assuming values for the others, and once those parameters were
determined, fitting a couple more, etc. This approach is necessary because the methods used in
MatLab’s built in optimization toolbox (Fminbnd - Golden Section search and parabolic
interpolation, and fminsearch - Nelder-Mead simplex search method) do not always converge
when more that two parameters are fit at the same time, especially when the sets of equations are
non-linear. The GA approach is more tolerant, e.g., it is able to fit four or more parameters
simultaneously for these sets of equations.

It is also noted that the goodness of fit is typically calculated as the least squared
difference between experimental (or simulated experimental) data and model predicted
concentration vs. time curves. The bio-model predicts separate curves for singly, doubly, etc.
bound Antigen, and a total bound curve is calculated by summing them. In general is easier to fit
the model if many such data curves are available, but it might not actually be feasible to measure
all of the curves experimentally. All of the results here used evaluation functions that included
many curves, rather than just the total bound curve. If only the total bound curve can be
experimentally measured, multi-stage fitting approaches as described above may be necessary.
This restriction of experimental measurability may not apply in other problem domains, therefore
it is still of interest to evaluate performance based on evaluation functions that use all the curves.

These MatLab versions were written to take as input a “.m’ file that specified GA
parameters and a “.m’ that specified bio-model parameters, in a manner similar to that of the “.h’
files used in the C version described above. Also, several programs were written to control
exercising the tools, e.g. to run several trials and gather statistical results to characterize
performance, and to repeat tests for a multiple sets of parameters. The performances of these
MatLab versions (Mv1 and Mv2) are also covered in a later section of this report.

10

MatLab v2 bio-model ported to C

Finally, a C version (Cv2) was produced that used the GA tool and ODE solver ported
from Cv1 (C from Labview) that was mentioned above, along with a bio-model ported from Mv1
(MatLab bio-model from Purdue). Table 4 summarizes the characteristics of all the various GA
fitter/bio-model versions.

Table 4 Characteristics of various GA fitter/bio-model versions.
custom means code written by IFTC)

Name | Source | GA Bio-Model ODE

LvO | Labview | custom Early custom parsed from text
Lvl | Labview | custom Early custom custom

Cvl |C custom Early custom custom

Cv2 |C custom Purdue, June 02 | custom

Mvl | MatLab | GAOT Early custom custom

Mv2 | MatLab | GAOT Purdue, June 02 | In MatLab

Evaluation of speed, accuracy, convergence, and scaling performances of the Labview,
MatLab, and compiled C versions

A number of tests were done to characterize and compare the performance and scaling
behavior the various versions. Prior to the performance tests, some initial studies were done to
identify reasonable values for the GA parameters, with the results listed as typical parameter
values in Table 2. After those initial studies, performance and scaling metrics were defined to
as shown in Table 5.

Table 5 Performance and Scaling metrics for GA bio-model fitter.
Category Description
Speed

initial population solution time vs. initial population size
running or target generation solution time vs. target population
size

average solution time for good fit

Accuracy

individual parameter fitting errors

average parameter fitting error

maximum parameter fitting error
Convergence did the run terminate at the maximum number of generations?
Problem Difficulty behavior fitting 2, 4, 6, or more parameters simultaneously
Parameter Search Range Effect of widening parameter search ranges
Fitting Accuracy Effect of relaxing fitting accuracy requirement
Noise and Sparse Data Effect of fitting noisy and sparse data

Generally the results are stated as the average performances measured for a set of 20 or
30 runs of the fitting task, although only 1 run was used for some of the slower versions. Care
was taken to set GA and bio-model parameters the same for each version so that very similar

11

calculations were being made when testing each different version (e.g. the binding and release
curves had concentration vs. time values calculated for 100 points in time). The tests and the
results are described in the remainder of this section.

Speed

Figure 5 shows the results of the speed Test 0 that measured the solution time of the
initial population as a function of the number of individuals in the initial population. The
compiled C version Cvl was 2-3 orders of magnitude faster than the Labview version Lv1.
Using the Purdue bio-model with more detail increased the execution time by less than a factor
of 2 in the complied C versions (Cv2 vs. Cvl). Moving from the all custom Labview version to
the MatLab version using GAOT decreased execution times by a factor of about 3-20 (Mv1 vs.
Lvl). In MatLab, moving to both the model with more detail and to the built-in ODE solver
increased execution time by a factor of about 50 (Mv2 vs. Mv1).

Speed Test_0
{targ 200, kprs 20% muts 10% gens 100, targ emr 2.5, tmax .1, dt .001,
i 7

1.0E+3 # eqns T+xt, fiting 4 params)

10E+02 M
.g @/‘Q-/ F
5
S 1.0E+01 -
5o /Q’Q
S n
8= @
E2 10E+00 ———
5" /
] e
o 1.0E01 =
[} s
i o
= 1.0E-02 —

1.0E03 T T

1.0E+01 1.0EH02 1.0E+03 1.0E+04
in Initial Population
|+ Lv1 1run —— Cv130 nns —— M1 1 nn ——Mv2 1 —— Cv2 30 ns

Figure 5: Speed Test_0, solution time of the initial population
as a function of the number of individuals in the initial population.

The second speed test done (Test_1, Figure 6) measured the execution time for solving

the first generation of the running, or target population, again as a function of the number of
individuals in the target population. As expected, the curves are basically identical to Test_O.

12

Speed Test_1
{init 200, kprs 20% muts 10%, gens 100, 30 runs, targ err 2.5, tmax .1,
<t .001, # eqns 7+xt, fitting 4 params)

10E+03
10E402 G-/&’/ef‘*o

£E

a0 1O0EH1 —

o ¥

s 10E0 — 8

£s ot

g 10E01

10E03 : :
1.0E401 1.0E+02 1.0E403 1.0E+04
in Target Population
[~ Lv1 1 run ——Cv1 30 runs —s— M1 1 run —e—Mv2 20 runs —— Cv2 30 runs|

Figure 6: Speed Test_1, solution time of the target population.

Any of the fitter versions should require a similar number of executions of the ODE
solver to evaluate candidate parameter sets in order to arrive at a good fit. In practice, good
fitting runs may require simulating on the order of 200 generations of a population of 1000
individuals. Cv1 and Cv2 show generation execution times of about 0.1 sec for a population of
1000 individuals, so 200 generations would take about 20 sec. Mv2 shows a generation
execution time of about 360 sec for a population of 1000 individuals, so 200 generations would
take about 7.2e4 sec, or about 20 hours. The C versions would obviously be much more useful
than the MatLab versions for doing a lot of optimization runs.

The third speed test (Test_2, Figure 7) measured the time to complete a fit. The
termination criteria for this test included two conditions. One was related to the maximum
number of generations, in this case 2000, and the other was related to the accuracy of the fit that
we called the maximum normalized difference. The maximum normalized difference was
calculated at every point on the concentration vs. time curves as abs [(best-actual)/actual)]. The
fit was terminated if the maximum of these calculated values was smaller that a target value of
0.02, meaning that all points on all of the curves was fit to <2% error. We had previously used
an accuracy criterion that was the sum of the normalized differences at all points, but we
suspected that the sum measure could be low even with significant point-to-point fitting errors.

13

Speed Test_2

(irft 1000, targ200, % kprs 20, muts 10%, gens 2000, 20 or 30 runs, err2.5,
max_norm_df 2%, tmax .1, & 001, # eqns T+xt, fitting4 params)

1.0E+04 Table 6 % of Runs Reaching
Maximum of Generations

1.0E+03 Version | %
Cvl 0

1.0E+02 Cv2 0
Mv1 90
Lvl 10

1.0E+01 l

1.0E+00 J ; ; ;

cv1 Cv2 Mv1 Lv1

Average Well Solved Elapsed Time (s)

Figure 7: Elapsed time for fitting task for the versions.

14

An important point to note is that 2000 generations was enough for the C and Lvl
versions to do a good fit, but the Mv1 version often ran to the maximum number of generations,
as shown in Table 6. We later found that the residual errors in parameter estimates were larger
for this version, too. These results suggest there was a residual bug in that version, but after
carefully looking at the code for our adaptation of GAOT we could not find one. We did not
look for bugs in the complete GOAT code because that was beyond the scope of this project.

Accuracy

Another metric of interest is the accuracy of fitting parameters in the model. We kept
track of individual parameter fitting errors, and calculated the maximum and average fitting
errors after each run, and the averages of these measures over all runs. Figure 8 shows the
average over 20 or 30 runs of the maximum parameter fitting error over all 4 parameters being
fit. These data were measured during Test_2 described above, and we know that the MatLab
GAOT version was running to the maximum number of generations, not really finishing a good
fit. The results show that 4 parameters could all be fit simultaneously by the C and Labview
versions to within about a percent using the 2% maximum normalized difference criterion.

Accuracy Test 2
(init 1000, targ 200, % kprs 20, muts 10%, gens 2000, 20 or 30 runs, err
2.5, max_norm_dif 2%, tmax .1, dt .001, # eqns 7+xt, fitting 4 params)

- O

=]

=

Fitting Error (%)

Average Maximum Parameter

(= L}

Tom R H B

Cv2 Mv1 Lv1

Figure 8: Average maximum parameter fitting error for the versions.

Convergence

We mentioned above that the maximum number of generations allowed for Test_2 was
2000 generations, but actually the Lv1 and C versions usually accomplished a good fit in 220-
300 generations, as shown in Figure 9.

15

Convergence Test 2
{init 1000, targ 200, % kprs 20, muts 10%, gens 2000, 20 or 30 runs, err
2.5, max_norm_dif 2%, tmax .1, dt.001, # eqns 7+xt, fitting 4 params)
2000

2 1000

]
=1

Average # G
8 3
o o

o
o

. H-

Cv2 Mv1 Lv1

o

[

Figure 9: Average number of generations for good fit for the versions.

Problem Difficulty

Figure 10 shows the average elapsed times and average sum of parameter fitting errors
for 20 runs while fitting different numbers of parameters, using version Cvl. Table 7 shows
which parameters were being fit for each set of bars. Generally, fitting more parameters is
harder and takes more time.

Average Elapsed Time and Sum Err vs #Parameters Fit
20 runs (max_gens: 2 0% 4- 0%, 6 -30% 5 wlo Kg - 45%, 8 - 100%)
250
2 200
[
w
E"E 150
=
E & 100
L F]
]
s 50
; L
0 T — T T T
2 4 6 SwioKg 8wloKg
#parameters fit
‘ O avg et's {gens proportional) H sumerr |

Figure 10: Elapsed time and Sum Err fitting different numbers of parameters (Cv1
version).

16

Table 7 Parameters being fit for sets of bars in Figure 9.

parameters being fit parameters being fit

2 Ka, Kd

4 Ka, Kd, Kx, Kx-

6 Ka, Kd, Kx, Kx-, Km, Kg

5 w/o Kg Ka, Kd, Kx, Kx-, Km

8 wo/Kg Ka, Kd, Kx, Kx-, Km, D, E, R=Ab0

The tests of Figure 10 were done with similar test conditions as the previous tests, with
initial population=1000, target population=200, and the maximum number of generations was
2000 except for the set labeled 8 w/o Kg where the number in the initial population was 500 vs.
1000 and the maximum number of generations was 400 vs. 2000 because the fitting times were
so long. All the runs went to 400 for the 8 w/o Kg set. The test was repeated with 2000
generations, and the results were similar (all runs went to 2000 generations).

Effect of parameter search range

Figure 11 shows the effect of parameter fitting range on performance, again using version
Cvl. The label 2X means that the search range for each parameter in the model was set to be
twice as wide as, and centered on the actual parameter value, e.g. if an actual parameter value
was 2, the reach range would be from 0 to 4. The # generations and times go up searching larger
ranges, but the accuracy of fitting parameters is still good. All of the above tests were done with
a range of 2X.

Performance vs Parameter Range Searched
{1000 intial, 500 target,20% kprs, 2000 gen, 10% mut, 10 runs)

80 1400
2 + 1200
e Bl 1 1000 £
=250 S
£ +800 2
gl 5
1 600
=330 %
8% 459 1400 2
10 4 =+ 200
0 . . - 0

2x 4x 10%
Range Multiplier (x Actual Value)

|D avg et's @ avg max err's M avg # gens's|

Figure 11: Effect of parameter search range on performance.
Fitting with relaxed accuracy requirements

Figure 12 shows the effect of relaxing the goodness of fit requirement, i.e. increasing the
maximum normalized difference termination criteria target.

17

Performance vs max_nomm_dif Termination Criteria
1000 init, 200 targ, 20% Kprs, 500 m axgen, MS 2, 10% mut, 20 runs, C, all x's fit)
250
200
2 &
c %150
S = O gens
E «' 100 E maxerr
c o
mE
50
1]
2% 4% 8%
max_norm_dif allowable point error

Figure 12: Effect of fitting with relaxed accuracy requirement.

Fitting noisy and sparse data

Some testing was done at the suggestion of the Purdue PI that looked at fitting noisy and
sparse data. These simulations introduced amplitude noise by adding a random 0-20% noise
value to each of the data points to be fit. The tests with sparse data simply used a subset of the
data points normally fit, with every nth point selected for the set to be fit. Figure 13a. shows a fit
done with no noise, and all data points for reference. Figure 13b. shows a fit done with noisy
data (maximum 20% noise). Figure 13c. shows a fit with only every 10th data point used for the
fit. Figure 13d. shows a fit done with a max of 20% noise and using every 10th data point.
These tests were done with only 20 generation runs, so the fits of noisy data would probably
have been closer to a least squares fit of the data used if more generations had been used. These
tests were done with MatLab version Mv1.

18

Figure 13a. Fitting all data points, no Figure 13b. Fitting all data points, 20%

noise. random noise.
Figure 13c. Fitting every 10th data point, Figure 13d. Fitting every 10th data point,
Nno noise. 20% random noise.

19

Evaluation of GEPASI Bio-model Simulator

While attending the summer 2003 DARPA SIMBIOSY'S Pl meeting | became aware of a
software package called GEPASI that was developed by The Mendes group at the Virginia
Bioinformatics Institute located in the Corporate Research Center at Virginia Tech in
Blacksburg, VA. From web site http://www.gepasi.org/ ”...GEPASI is a Microsoft Windows
program intended for the simulation of the kinetics of systems of chemical and biochemical
reactions. The program is aimed at the study and teaching of the behavior of such systems.
GEPASI is able to simulate the steady-state and time-course behavior of reactions in several
compartments of different volumes. The user supplies the program with information about the
stoichiometric structure of the pathway, kinetics of each reaction, volumes of the compartments
and initial concentration of all chemical species. The program then builds the differential
equations that govern the behavior of the system and solves them. Results are produced in a
flexible way so that data can be imported into spreadsheets or other data processing programs.
The data can also be plotted in 2D and 3D graphs directly from the program (by using the
package gnuplot that is distributed with GEPASI). GEPASI has the ability of scanning ranges of
values of the system parameters and produce a mapping of the behavior of the system within
these ranges. ...”

GEPASI also can be used to fit model parameters, and can do so with a number of
classical methods, as well as an “Evolutionary” method. | downloaded GEPASI and worked
with it for about a week. 1 set up a simple version of the equations for the Ag/Ab binding
system, and tried out some of the parameter fitting mechanisms. I did not learn how to input the
model exactly using the set of canned reactions they provided, so | implemented it using a sum
of custom reactions they allow the user to define. | verified that it reproduced the binding curve
pretty closely. | experimented with fitting the ka parameter. Ka appears in more than one term,
and | tried fitting its appearance in only one of the terms. | found that only the “Evolutionary”
method worked. The others failed to converge. The others included Hook and Jeeves,
Levenberg-Marquardt, Levenberg-Marquardt multistart, Nelder and Mead (simplex), and
Simulated Annealing. There was a method called Random, and it did better than the others,
although much poorer that the Evolutionary. Each of the methods had a set of parameters to set
up, and | experimented with them all but could not find sets that would make the classical
methods work. | suspect the reason is that the equations are non-linear in ka.

I’m not sure if it is possible to set up the set of equations in GEPASI exactly as they are
in the Purdue model, or whether all the occurrences of each parameter can be linked to each
other and still be fit.

Java/OAA wrapped PC GA ODE Parameterizer version prepared as BioSpice agent.

A version of the PC GA ODE parameterizer was developed and tested that met the
requirements for contribution as a functional agent operating under the BioSpice Open Agent
Architecture (OAA 2.3.0) software environment. Following the pattern of certain other BioSpice
agent contributions, this version wrapped a C executable in OAA Java. It included an Apache
Ant Java based build tool to control compilation on destination machines, as well as test case
data and results. We provided this version to the IF focal point for the SIMBIOSYS program.

20

Web Browser Interface PC GA ODE Parameterizer Version

During the winter semester break of 2004, a unique interface was developed that explored
ways to enable remote, non-programmers who might want to experiment with such tools to
easily control runs with different values of various parameters in the GA and Model. This type of
interaction is often necessary in order to discover sets of parameters that solve the problem well,
or to test performance while running a Model with different settings or under different
conditions. The idea is to make a user interface that is independent of the specific GA or Model
C codes, i.e. that would work with other Models contributed by other workers and integrated
with the GA ODE parameterizer, and that would not require the user to be a programmer in
either the source programming language of the GA or the Model executables. The basic
approach is to present the user with at a web page that allows the specification of a set of
variables, and values for them, and that includes functionality that automates the process of
updating and running the GA and Model codes. Figure 13 shows an outline of the parts of the
web interface.

The first part is a web page with a 3 column list that allows the user to specify a one or
more Model variables and their specific values to be used in a run. The first column is for the
names that the biologist prefers to use for each parameter when working with the Model. The
second column is for the names the Model code programmer used for the variables in the Model
code, and the third column is for the values the user wants to apply to these variables for the run.
The user then clicks the Submit button on the web page, and three things happen. First, a file is
written to disk that contains the parameter mapping names and values. Second, another web
page pops up and reports progress to the user during the ensuing re-compilation and run process.
Third, it causes a batch program to run that looks at the information in the disk file and runs a C
application called Create_page.exe that in turn produces the source code for a second web page
(GA_params.html).

The second web page is a reusable interface to the GA Parameterizer. It pops up and
allows the user now to enter GA parameters and execute runs of the fitting procedure, e.g. with
different population size, number of generations, etc. After entering GA parameter values, the
user hits the submit button which triggers saving a GA parameter information file to a disk file, a
progress update on the reporting page, and the launching of another batch file called
GA_v2web.bat. This batch file runs a C application that parses the saved Model and GA
parameter data files, produces a Systems Biology Markup Language (SBML) file that specifies
all the desired GA and Model variable values for a run, and then runs the GA/Model executable.
The GA/Model executable in turn reads the SBML file with GA and Model variable data when it
starts, and applies the variable values before running. This sequence of steps worked well, and it
accomplished the goal of enabling a complete non-programmer to interface efficiently with the
fast, compiled C codes for the GA and Model.

An important feature and advantage of this approach is that it enables a remote, non-

programmer user to use the GA/Model ODE Parameterization tools using only a web browser
interface, which is a free, open-source, non-platform specific mechanism.

21

) Qeate User Interface

=) cal -

- Use e

S create page.coi =~ %

:‘m .s& @ Success (tenp) Qreate_Page.bat

meebl

=== ‘& % El - ‘%

Web_Create.htr \ w;egIS
Variables.att '& googép:i

Qreate Page.exe

A‘ -
B X —— GA_v2 web.bat ﬁa'
'.___:_ '__:__'_'_j." ; ‘\°§@ Success (tenp) z }

< A
. %)
N
POSTDATAEt Web | I%rse exe spec.sbm
Figure 14: Outline of web browser interface for GA ODE Parameterizer.

éc
a
]
l

GA_Parans.htrr

Summary of work in Spiral 1 (PC platform)

We found that a GA based optimizer could solve the Non-Linear ODE Parameterization
problem for our test case problem, and that it was superior to common methods currently being
used by some DARPA program PI’s because it worked on full, unreduced, non-linear models,
and can easily deal with sparse and noisy data of the sort provided by real world experiments,
and in our case it operated much faster as well. We also developed two versions of the tool with
enhanced user interfaces. One is a BioSpice agent version, and one is a web browser interface
version.

The work in this spiral was presented to the 2003 Scientific Advisor Board during their visit to
AFRL/IF, in the Advanced Computer Architecture focus area poster session. It was also
discussed with relevant DARPA SIMBIOSYS and BIOCOMP program PI’s at various Pl
meetings over the last 2 years. Finally, it was reported at GECCO 2004, in Seattle (see
Appendix A).

Spiral 2: (Cluster platform)
GA ODE Parameterization Problem

During the summer of 2004 we developed and evaluated two parallel versions of the GA
ODE parameterization tool. One was based on a “Farming Model” GA, and one was based on
the Island Model” GA. These are so called “multi-deme” GA’s that divide up the work of
evaluating the fitness of individuals in the population across multiple processors in a cluster. In

22

the farming model, one processor maintains the large population and passes groups of
individuals to all other processors for evaluation, and waits for them return before starting the
next generation. In the Island Model, a group of processors is connected in a ring topology, and
each processor breeds a separate, smaller population, but periodically passes a few of its best
individuals to another processor, and receives a few from another processor. The Island Model

GA has better performance as processors are added to the group because it requires significantly
less total communication time.

These parallelized codes are written in C, and use the Message Passing Interface (MPI)
protocol for communication among processors. This work was mostly done in the summer of
2004 by Kevin May, a Summer Engineering Aide, assisted by Dr. Larry Merkle, Rose Hulman
Institute of Technology, a Visiting Summer Faculty Research Program participant.

These codes were instrumented with time profiling tools in order to analyze the amount
of time the processors spend computing and communicating. This information is used to help
manually optimize the communications among processors. Figure 15 shows a typical time
profile for the Farming Model GA after optimizing. As a generation runs on the master
processor, it is busy during the GA sort, mate and mutate (top row, orange), but the other
processors are idle (other rows, light blue) as they wait for work. This is followed by rapid
transfers of individuals from processor 0 to the others (row 0, white and other rows green). Then
the master processor is idle as it waits (top row, green) while the other processors process their
individuals (other rows purple). Then the other processors return their calculated fitness values

(other rows, white) and the master processor receives these values (top row, white) and begins
the next generation.

'

e Ve tar m Yo oo o s Y

SO0 T Lara s O

= j_ -Eé;

Key

[v] B Send [w] | | Receive [w] _]Brnadcasti @!SDI\I‘E‘ [SMM] [Wi AN

Figure 15: Jumpshot time profiling of Farming Model distributed GA (26 processors,
beyond speed-up plateau).

Each row represents a processor (top row is the master processor), and colors indicate
compute and communicate times. Master processor is only busy during top row white

and orange, and other processors are busy only during purple. Large amounts of green
and light blue times are spent waiting for communications.

2

w

A standard figure of merit for assessing the scaling performance of distributed
applications is the speed-up curve, which measures how the performance of the application
changes as more processors are used in the group. Figure 16 shows a speed-up curve for our best
tuning of the Farming Model distributed GA, along with theoretically ideal performance.
Performance plateaus at about 10 processors.

Farming Model DOstributed GA ODEParameterizer
Speed-W vs Number of Processors
35
30 P
-
5 o5 |-+ Speedlp o ledl] e
] o
[=
Q. 15 1 ,,,,,D/E/l
a 10 N o B/D/E/D 00000000 o 090
a7 o o0 M
5 o o
e anl
O T T T T T T
(0] 5 10 15 20 25 30 35
Number of Processors

Figure 16: Speed-up curve for best tuning of the Farming Model distributed GA.

Ideal performance is rising line of slope 1. Performance does rise as up to
about 10 processors are added, but plateaus.

Island Model distributed GA

An Island model distributed GA was implemented that cures some of the inefficiencies of
the Farming Model GA. This model uses a group of processors connected in a ring topology.
Each processor breeds a separate population, or “deme” of individuals. However, after every
epoch of a certain number of generations, each processor passes a few of its most fit individuals
to the processor after it in the ring, and receives a few from the processor before it in the ring.
Each processor runs an identical program, although the 0™ processor is the master and does
certain bookkeeping tasks. Communication between the processors takes place only at the end of
epochs, and when a solution has been found and the run terminates. Time profiling and
communication tuning was also done on this code using Jumpshot. Figure 17 shows a speed-up
curve for the best tuning. The speed-up is not perfect, but quite good, with no plateau up to
about 29 processors. The curve is jagged because the points are the average of only 3-5 runs.

24

Island Model Disributed GA ODE Param eterizer
Speed-Up vs Number of Processors
35
30 —o— Speed-Up New S
® 25 —a— Linear Speed-Up «/‘“ﬁ/& o
2 et
o 20 - ot
:.) A
- 15 4
o
& 10 -
5 1
0 T T
0 5 10 15 20 25 30 35
Number of Processors

Figure 17: Speed-up curve for distributed Island Model GA ODE Parameterizer.

DNA Code Word Library Generation Problem

During 2004 we also developed both single PC and distributed Island Model parallel
versions of a second application of a GA optimizer. This second application involved the DNA
Code Word Library Generation Problem, which is of current interest to workers in AFRL/IFTC
and elsewhere. This problem involves composing highly constrained sets of pairs of short DNA
oligo-nucleotide strands, e.g. about 16 base pairs long. The pairs in the set must each consist of
two strands that are perfect reverse compliment halves that bind well to each other, but not well
to any other strand in any of the other pairs in the library. This is a hard problem that is known to
be NP-complete, and at least 4 University groups are actively working on it. There are important
applications of such Code Word Libraries in the design of bio-assay micro-array chips, self-
assembly of nano-structures, and in schemes for data storage and computation using bio-
molecules. Random search and exhaustive search have proven ineffective for building large
libraries, and current techniques use stochastic and heuristic methods.

Our approach to this problem starts building a library by finding one pair using random
search. It then breeds additional words using a GA guided by a multi-objective fitness function
that measures the string edit distance (calculated by the Levenstein Martix) and that also counts
the number of pairs presently in the library that reject a given candidate pair. The GA uses an
efficient mutation heuristic that chooses a base pair to mutate at random, checks the fitness of
words with all possible single base changes at that position, and uses the mutation that improves
fitness the most.

Our distributed Island Model GA was modified to provide communication among
processors for 3 cases. The first case involves passing a few fit individuals around the processor
ring at the end of each epoch of generations. The second case occurs when any processor finds a
new code word pair that can enter the library. This is an infrequent occurrence, but the new word
pair must be passed to all processors. The third case involves terminating a run when any of the
processors has found the desired number of pairs, or exceeded time or generation limits.

25

Again the code was instrumented with time profiling tools and the communication modes
and placements in the program sequence were tuned. As for any stochastic optimization method
that uses random number, results must be analyzed in terms of the average performance of many
runs. We developed Labview run manager and data analysis tools to automate this work.
Basically, the run manager is a GUI that enables the user to specify run time switches for the
GA/DNA Code application that control the run, e.g. the number of DNA base pairs in the code,
the number of code words desired, the GA parameters, number of processor nodes to be used,
etc. It outputs a text file that is a script that is used to invoke a set of runs on the cluster platform.
Each run on the cluster produces a text file that has information about the words found, when
they were found, their fitnesses, etc. The analysis tool reads these files and presents plots of
words found vs. time, and of the speed-up curve. A typical experiment might consist of finding
100 pairs of words using 1 processor, repeating the run 30 times, and then doing this for 2, 3, ...,
30 processors, resulting in 900 data files. Figure 18 shows an example of the front panel display
of the data analysis tool for the case of 5 runs of finding 20 words, repeated using 1-30
processors. The plot on the left shows the progress of each run, and the plot on the right shows
the speed-up here are three curves in the speed-up plot. The red curve shows the theoretical ideal
linear speed-up. The blue curve shows a speed-up curve where each point is the average of all
runs at the corresponding number of processors that actually found the desired number of words
(some may not complete within the chosen maximum time or number of generations). The green
speed-up curve is for censored data that has excluded runs that did not find the desired number of
words or for which the run time is outside one standard deviation of the average run time for that
number of processors.

actual speed-up

plot results of scan # procs ideal linear speed-up
e e e only those that Found # words requested censored data speed-up

words found

o0
o

&
o

i
o

1)
o

o
=)
1

10,0000 100.0000 SDD.IDEIDD
time {sec) .
;543454545555553
Figure 18: Multiple run data analysis tool front panel display.
Data shown indicates near linear speed-up.

We attended a 3 day conference in March 2005 at SUNY Geneseo
http://www.geneseo.edu/~macula/DNAWordConf that brought together the top workers on this
problem from 4 Universities to discuss approaches and exchange results. This led to further
collaborations among several of the attendees which have since shown that the Markov
probability guided Library Generation method of Dr. Tony Macula/Geneseo the fastest and most

26

efficient in the world. We compared the performance of that method with the distributed Island
Model GA/DNA Code Word Library application, for a particular sub-case of the problem, i.e.
using only the Levenstein matrix measure for constraint checking for stem size 1.

Figure 19 shows the results of this comparison. The curves show the average number of
words found vs. time for multiple runs of the algorithm, and for the cases of 1 and 16 processors.
The GA actually finds words faster up to the time at which words become very difficult to find.
We did, however, observe that the Markov method did continue to find a few more words after
that point, but we have not determined why at this writing. It may be because the criteria used
for choosing words to add to the library early in the process is different for the two algorithms,
and it might be that the GA would find as many words if it was run longer. At any rate, this
work has led us to consider an improved heuristic for guiding mutations in the GA method that
will be useful in harder versions of this problem, i.e. ones that consider stem sizes other than one.
A stem is a string of adjacent matching bases. The mutation locates and mutates base positions in
words that hurt fitness by extending a stem, rather than mutating randomly choosing parts of the
words. We have coded this heuristic, but not incorporated it at this point.

DNA Library Synthesis Algorithm Performance Comparison
word length 16, match 10, Lv RC codes, 214 word libraries
Mkv 15 run avg, GA 30 run avg. (1 and 16 proc), stoch 1 run 1 proc

1.0E+05
d o OO 0—0-0-000000CaCCEED
1.0E+04 ——GA 1p30r —=—-GA 16p 30r
—— Mkv 1p 15r =& Mkv 16p 15r
1.0E+03 —o—stochlp 1r Vi
© 1.0E+02 - '}
3)
(O]
£ 1.0E+01 -
1.0E+00 ~
1.0E-01 A
o
1.0E-02
1 1000

words found

Figure 19: Comparison of Markov, GA, and stochastic DNA Code Word Library
Generation methods.

GA (red) finds words faster than Markov for both 1 and 16 processor cases.

Markov (green) found more words for 1 processor case. Stochastic (blue) is very
slow.

27

Application of distributed GA to Sensor Network Energy Management:

During the summer of 2005, a Visiting Summer Faculty Research Program participant, Dr. Qinru
Qiu/Binghamton University, Binghamton, NY, applied the distributed GA code we developed
under this project to a third problem. That problem is the Distributed Sensor Networks Energy
Management Problem, a multi-objective optimization problem. This problem involves
determining best assignments of computation and communication tasks to nodes in a network,
with competing objectives of providing good network service and conserving battery resources.
She was able to demonstrate that the distributed GA can readily solve this problem for a test case
involving a particular version of a set of network tasks, task costs. She studied a unique approach
that assessed using the distributed sensor nodes themselves to solve the Policy optimization
problem using a distributed GA. Typically this hard problem is pre-solved before deployment
off-line, or possibly in-network by communicating with a centralized off-network node, which
may have high costs in terms of communication, energy use, and result in non-stealthy exposure.
She was one of 5 of 20 applicants awarded a small follow-on effort to continue their summer
work, and will augment the model and tasks, and investigate GA tuning to ensure the ability to
compute robust solutions.

Summary of work in Spiral 2 (Cluster platform)

A distributed Island Model GA optimization solver was developed and successfully
applied to three problems, Non-Linear ODE Parameterization, DNA Code Word Library
Generation, and Sensor Network Energy Management. This distributed version exhibited good
speed-up scaling vs. number of processors on a 30 node cluster. The DNA Code Word solver
exhibited performance that we believe rivals the best know algorithms in the world. The work
on this spiral was reported at FNANO 2005 (see Appendix B), and at GECCO 2005 (see
Appendix C).

Spiral 3 (Hardware Accelerated Platforms)

The third spiral addresses the ultimate path to extreme algorithm speed-up, i.e. hardware
acceleration. Since integer problems as much more amenable to hardware speed-up, we will
work on the GA/DNA Code Word Library Generation problem in this spiral, not the ODE
Parameterization problem. We are taking two approaches to hardware acceleration. The first is
uses a Higher Order Language (HOL) translation tool to produce a VHDL version more or less
directly form the C version. VHDL is the language required for our tools that synthesize a
personalization of a hardware FPGA. Actually, to use these tools, it is necessary to augment the
C version code with data streams constructs first. The second approach is to manually rewrite the
C routines in VHDL. Both of these approaches require a mind set change by the programmer,
i.e. from the sequential line by line code execution model of C, to the multiple concurrent
process execution model of VHDL and hardware. This does bear some resemblance to moving
from sequential C on one PC to a distributed cluster running many copies of the concurrently,
but in the VHDL model the parallelism extends to the lowest level of the code. We will start by
addressing a single PC, single FPGA chip version of the DNA Code Word Library Generation
tool, with a future goal of developing a distributed version under this spiral.

28

HOL tool version

We researched many of the HOL tools being marketed today, and chose one to evaluate
called Co_Developer from Impulse, Inc. It requires the user to augment the original C source
code for an application with constructs that fashion a data path with queued streams passing data
between blocks of combinational logic and registers implementing calculations. We obtained
temporary trial licenses from Impulse over the course of about a year, and eventually did produce
a version that simulates correctly at the level of C in the Co_Developer Application Monitor. As
far as going the next step to VHDL is concerned, our application is a moderately complex one,
and we basically acted as a Beta site, testing current revisions of the tool as bugs were fixed.
However, to date we have not been able to successfully compile to a VHLD version that will
load and execute in ModelSim. At this point progress is still being made, and we would like to
continue working at a low level of effort with the Co_Developer team at Impulse, especially on
the GA algorithm part of the problem. There is still hope that this tool path may help us avoid a
lot of work rewriting the GA in VHDL. At the least it would give us HOL tool version size and
speed data points to compare against a handcrafted version, and this is valuable to us.

One shortcoming of the HOL tool path is that we don’t think that the tool is capable of
unrolling a doubly nested loop containing a calculations into a two dimensional array of
hardware cells (.e.g. a systolic array). As human designers we can envision this approach, but
we are not sure that software tools exist to execute this type of design automatically, at least in
the Impulse tool. There may be systolic array generation tools available for this somewhere.

Hand crafted VHDL version

Speed profiling of the C code version with a GNU application called gprof
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.ntml showed that the Levenstein matrix
calculation consumed over 98% of the time, as shown in Table 8, so this routine was selected for
implementation in hardware first. During the summer of 2005 we developed two versions of
synthesizable VHDL Levenstein matrix hardware accelerators, a ripple through version, and a
time multiplexed systolic array version.

Table 8 Time profiling study of GA/DNA Code Word Library Generation application

showing time consumed by subroutine (produced with GNU gprof).
% Cum self self total
Time sec sec calls s/call s/call | name
98.13 | 46.77 46.77 13115396 0.00 0.00 | do_matrix_v6
0.65 47.08 0.31 6603415 0.00 0.00 | i2s
0.44 | 47.29 0.21 90836 0.00 0.00 | do_checks
0.38 | 47.47 0.18 3 0.06 0.07 | clean_up_pop
0.23 | 47.58 0.11 272685 0.00 0.00 | s2i
0.08 | 47.62 0.04 90895 0.00 0.00 | compliment_x_str
0.06 | 47.65 0.03 91835 0.00 0.00 | are_you_in_there
0.02 | 47.66 0.01 93753 0.00 0.00 | pop_to_word
0.00 | 47.66 0.00 90895 0.00 0.00 | compliment_reverse x_str
0.00 | 47.66 0.00 960 0.00 0.02 | smart_flip_2
0.00 47.66 0.00 63 0.00 0.50 | find_fitnesses

29

The tool path we used includes the ModelSim Xilinx Edition 11 design environment from
Mentor Graphics, the ISE 6.1i Service Pack3 synthesis tool from Xilinx, and we targeted the
FPGA chip in our cluster with hardware, the XCV6000-4FF1517C from Xilinx.

Figure 20 shows the basic Levenstein Matrix calculation that is the main work of the
do_matrix_v6 subroutine that dominates the calculation time. Word strands are presented along
the top and left edges of the matrix. Each cell along the top row (and left column) is initialized
to 0 and set to 1 if the bases at the top and left edges aligned with that cell are the same, or if the
cell to the left (or top) is already a 1. In the inner cells, the cells are initialized to 0, and are set to
the maximum of 3 values, the value of the upper, left, and upper left adjacent cells, except that 1
is added to the upper left adjacent cell value if the edge bases aligned to the cell are the same.

Figure 20: Levenstein Matrix Calculation

Only the systolic array version of this array will be discussed here. The ripple through
version was a good first step, but was slow (1L0MHz). Figure 21 shows the array of cells along
with register arrays along the top and left edges that sequence word pairs into the edge cells. It
also shows a breakout of one cell in the format of an entity defined in VHDL. The U, L, and UL
inputs are simple signals carried in on wires, but the A and B inputs are signals latched into
registers in the cell. The ans output of the 4_Bit_Compare sub-cell is also latched in the cell by a
register. Actually, the output of the A and B registers are outputs as well, as they connect to the
A and B inputs of adjacent cells below and to the right.

30

woesast 1111

g North_Word
=
- UL U A
==
-
—) = B
>
= 4
—) answer
Qlkj Do, CheckerMatrix.vhd

Figure 21: Levenstein matrix calculation array implementation.

Register

4 Bit_Compare

The present design is a time multiplexed systolic array that calculates comparisons for 16
word pairs simultaneously that flow along diagonal lines down through the array from upper left
to lower right. The shift registers at the edges of the array delay the presentation of the upper
bases of the words to the edge cells as needed to synchronize with the wave of calculations for
the word pairs. Inside the array, the base pair tokens are shifted down columns and across rows.
Also, the matrix is operated in a checkerboard fashion, with one half of the cells at any clock
loading inputs and with the other half of the cells calculating outputs. On the following clock,
the opposite happens. The “latency” of the array is 16 words, i.e. the answer for the first word
pair flow out the bottom right corner after the 16™ word pair is processed. After that, answers
flow out of the lower right cell every two clock cycles. A more complete description will appear
elsewhere.

Figure 22 shows a higher level functional block diagram that includes entities for on-chip
SelectBlock memories to hold the GA population, the fitness values of the population, and the
words of the DNA Library. It also shows a hardware entity called MemBlock.vhd that
sequences the fitness evaluation of all the individuals in the population against all the words in
the library, and stores the results. Another entity is also shown that is a simple software test
bench that takes the place of a GA for testing purposes at this point. The design of Figure 21 has
been synthesized, and software simulations show that it operates correctly.

We have submitted two papers that have been accepted on the work in spiral 3, one to the
STAR2005 meeting in Dayton, OH in Aug., and one to the 8th annual NASA Military and
Aerospace Programmable Logic Devices (MAPLD) International Conference, Washington,
D.C., Sep 05 http://klabs.org/mapld05/admin/cfp.html ,

31

Figure 22: Upper level functional block diagram of fitness evaluator.

Table 9 shows the synthesis run report that gives information about resource utilization
on the chip and expected speed of operation. This synthesis was for the case of 512 word
population and word libraries, which are adequate for the runs we have made thus far. It is clear
that much larger populations and libraries could be used, since only 3 of the 144 SelectBlock
RAMS were used for this case. Over 80% of the chip resources are available for the GA and
DNA Code Word Library application. This is encouraging, and it might even be possible to
support multiple fitness evaluators, or multiple populations, on one FPGA chip.

The target speed for this application is 100MHz, since that would give us a 1000x speed-
up over the software version.

Table 9 Synthesis report showing resource utilization and expected speed. Minimum
period: 12.37ns (80.8MHz)

Number of Slices: 4283 out of 33792 12%
Number of Slice Flip Flops: 2544 out of 67584 3%
Number of 4 input LUTS: 7532 out of 67584 11%
Number of bonded 10Bs: 98 out of 1104 8%
Number of BRAMs: 3 out of 144 2%

Actually, we know that the resource utilization show above can be cut about in half by
downsizing data path width in many of the cells. The design above used 4 bit data paths in all
cells, i.e. the cell can calculate values can to 16 (counting a carry out). But we know that the
maximum values that will ever be computed by the cells vary through the array as shown in

32

Figure 23. Therefore, the cells in the top row and left column only need to be 1 bit wide, the
cells in the next 2 rows and columns only need to be 2 bits wide, and so on. The ripple through
version that we designed before this systolic array version did use this minimum data path sizing,
and we intend to carry it into this design.

frmm £ o

ABBAAAAAAABBALAA ANAABABAAARABAAL

Figure 23: Maximum numbers that can be calculated in Levenstein matrix cells.

The next higher level functional block diagram of the application is shown in Figure 24.
The portions in yellow are those described above. This draft design was composed by Larry
Merkle during the summer of 2003 during his Visiting Summer Faculty Research assignment in
IFTC. He actually did produce synthesizable VHDL for some of the blocks, and this will serve
as a starting point for us.

33

Figure 24: Higher level function block diagram of GA optimization FPGA hardware core.

Summary of work in Spiral 3

We chose to go forward into this spiral with the DNA Code Word Library Generation
problem because it is an integer problem. We have investigated HOL tools for translating C to
VHDL, and we have worked with one supplier’s tool almost to the point of success. We hand
crafted a ripple through version of the (10MHz), and also a time multiplexed systolic array
version (80MHz), and we have determined that there are excellent prospects for fitting the entire
application into one of our FPGA chips. We have simulated a working version of the most time
intensive part of the application at about 80MHz, the fitness function evaluator, which is close to
our target of 100MHz that represents a 1000x speed-up. We submitted two papers that have
been accepted on the work in spiral 3, one to a FPGA meeting and one to an algorithms meeting.

Remaining work in Spiral 3

We need to complete the GA selection, mating, mutation, and random number generation
blocks of the design. Then we need to integrate the GA core and DNA Code Word Library
generator fitness function evaluator into one FPGA and test it. We also will evaluate doing a
multiple FPGA version, which will require finding or developing support for FPGA to FPGA
communications.

Future work

We have recently asked for a one year extension to this in-house effort, partly because the
work in Spirals 1 and 2 were deeper and wider than we had anticipated, the workload of the PI,
and because we would like to pursue additional opportunities that have arisen during the effort.
One new task we would like to add is to evaluate and purchase hardware acceleration platforms

34

for a Notebook PC PCMCIA card platform, and prototype the GA DNA Code Word Library
FPGA version on it. We expect that we will accomplish speed-ups for roughly 500x-1000x by
moving the entire application to one FPGA, would be performance superior to using most
clusters. We think that a notebook platform would be very attractive to users. A second
additional task we would like to pursue is to evaluate and purchase FPGA board for 1 node of the
AFRL/IFTC G5 BIOCOMP cluster, at to prototype the GA DNA Code Word Library application
on that platform. IFTC is involved in ongoing work on that problem. A hardware accelerator
could be developed for the most advanced version of the software, i.e. one that includes fuller
thermodynamic constraint checking, because this can also be done in integer arithmetic.

We could also turn to accelerating other EC algorithms if that is of interest to workers in
IF. We could also turn to different application problems of current interest in IF or elsewhere.

Another spin-off of this work could be to work through AFIT to develop an Application
Specific Integrated Circuit (ASIC) version of the GA optimization engine. We know this is of
interest to workers there in Gary Lamont’s group. There are some examples of such chips, e.g.
http://www.aist.go.jp/aist_e/aist_today/2002_04/2002_04 main.html#17 , however, they are
proprietary chips not commercially available for arbitrary applications. We know of no
commercially available EC chip that could act as a hardware accelerator for optimization
problems.

Finally, we are talking to a couple of labs that have developed architectures similar to this
one, albeit for different types of GA, and applied to different problems. Those labs used
different languages (Viva and Verilog) to develop their cores, but they might be able to provide
VHDL versions for a price. We could pursue CRADA’s to entice them to do this, with our side
of the trade being our distributed Island Model GA that is of great interest to both labs. We have
also had conversations with Virginia Tech about applying our distributed GA ODE
Parameterizer to their much more complicated biological model. Presently they are focusing on
a heuristic direct search method that provable will find the global minimum solution to the
parameterization problem, and will contribute this to the BioSpice program. But that method
requires memory to keep track of which parts of the search space have been searched, and this
information grows exponentially, possibly making it unsuitable for some problems. At this
point, we have acquired a free account for experimental work on their 1000 node X cluster, and
we intend to at least check the speed-up of our existing distributed codes with large numbers of
processors.

Figure 25 depicts a summary of the various platforms as well as current and anticipated results.
It is interesting to note that the single FPGA chip platform may be far less expensive that a
cluster, yet may deliver very significant speed-ups if the function evaluation can be cast into an
integer systolic array.

35

Figure 25: Speed-up and resources for the various platforms considered by this project.

36

Acknowledgements:

Kevin May, a Clarkson University senior, contributed greatly to the distributed GA ODE and
DNA Code Word applications, and the VHDL fitness evaluator as a student intern at
AFRL/IFTC during the summers of 2003-2005, and winter breaks 2003 and 2004).

Dr. Larry Merkle, Rose Hulman Institute of Technology, contributed to the GA Core for VHDL
as a Visiting Summer Faculty Research Program participant in the summer of 2004.

Dr. Tony Macula, SUNY Geneseo, and Morgan Bishop, JEANSEE Corp., Geneseo, NY,
contributed the Markov DNA Code Word generation results.

Dr. Ann Rundell, Purdue University, provided MatLab codes for the Ag-Ab binding model.
David Pelliren/Impulse Accelerated Technologies, provided assistance in evaluating
Co_Developer software.

Dr. Qinru Qiu contributed the work on the Sensor Network Energy Management Problem.

Clare Thiem AFRL/IFTC provided interface to the DARPA BIOCOMP and SIMBIOSYS
programs. The DARPA SIMBIOSYS (Dr. Anantha Krisnan), BIOCOMP (Dr. Sri
Kumar/DARPA), Bob Kaminski AFRL/IFGA) programs provided partial support for this work
through agent fees. Dr. Thomas Renz AFRL/IFTC/BioMolecular Computing Program provided
inspiration and support.

Dr. John Gallagher/Wright State University, and Prof. Gary Lamont, AFIT, provided references

and valuable discussions about compact/mini-pop GAs, and about multi-objective optimization
using GA, respectively.

37

Original Timeline and Milestones:

Quarter
Calendar Year
Task

1. PC software tools

select/port GA tools for PC

integrate bio-appl. w/ GA tool

port to OAA, Biospice contr.

GECCO 2003 EH wkshp

2. Cluster tools

select/port PC GA/bio-appl. to cluster

compare PC/cluster performances

to OAA, biospice cluster tool

tech. paper progress (Par. Prog. Conf.)

3. FPGA tools

select/port cluster bio-appl. to FPGA

ID and transition IF appl. candidates

x

X

tech. paper(s) on project results

x

Final Report

Revised Timeline and Milestones:

Quarter
Calendar Year
Task

1. PC software tools

select/port GA tools for PC

integrate bio-appl. w/ GA tool

port to OAA, Biospice contr.

Tech paper progress (gecco)

2. Cluster tools

select/port PC GA/bio-appl. to cluster

x

compare PC/cluster performances

to OAA, biospice cluster tool

tech. paper progress (fhano, gecco, mapld)

3. FPGA tools

select/port cluster bio-appl. to FPGA

X

X

ID and transition IF appl. candidates

tech. paper(s) on project results

x

Interim and Final Reports

38

Appendix A. GECCO 2004 Paper

On Parameterizing Models of Antigen-Antibody Binding Dynamics on Surfaces — a Genetic
Algorithm Approach and the Need for Speed

Daniel J. Burns?, Kevin T. May?

L Air Force Research Laboratory, Information Directorate, Rome, NY 13440 USA
burndserl.af.mil
2 Department of Computer Engineering, Clarkson University, Potsdam, NY, USA 47907
mavke@clarkson.edu

Abstract. This paper discusses the performance of a simple GA for parameterizing a particular biomodel
consisting of a set of coupled non-linear ordinary differential equations. Comments are offered on the need for
speed that motivates choice of language and processing platform for solving scaled problems.

1 Introduction

Ag-Ab (Antigen-Antibody) binding dynamics at surfaces is of interest to biologists because of the critical need for
biosensors and diagnostic tests for the presence of targeted substances in clinical, biological, or environmental
samples [Zheng 1]. Accurate models of binding dynamics are needed to support the design and performance
optimization of biosensor systems. Developing accurate models requires parameterizing them to fit experimental
data. This is a hard optimization problem that can easily become analytically intractable for complex nonlinear bio-
models. This motivates reduced order modeling that involves techniques such as variable replacement by
exogenous functions, temporal windowing, sequential parameter fitting, etc. [Rundell 2]. Even with reduced order
modeling, the computing time required for parameterizations can be many minutes. The present work evaluated
whether a simple GA approach run on a full, unreduced model could be more efficient. This work served as a test
case for developing working C codes that could be ported to parallel and embedded computer platforms to achieve
extreme speed-ups known to be needed for certain hard problems.

2 Summary of the work and results

We wrote codes for simulating the Model and for parameterizing the Model with a simple GA in Labview and in
MatLab, and translated them to C to achieve reasonable run times (100-10,000 X faster). Our GA used binary
representations of the floating point Model parameters. Values were searched over adjustable width ranges that
were different for each parameter. Adjustable GA parameters included # bits in each gene, # chromosomes, # genes
in each chromosome, # in initial population, # in running population, % of population selected to produce children,
% of gene bits mutated at each generation, maximum # generations, ranking method for selection (probability based
on fitness or rank), and termination criteria (based on total fitting error, or maximum single point error). We used
uniform probability crossover for all genes, and elitism (keeping the current best individual).

The Model equations predict the# of Ag particles bound to an Ab functionalized surface, with one equation
describing each attachment valency (i.e. the # of epitope sites binding an Ag particle). The Model has 6 parameters
(initial association rate, initial dissociation rate, transport coefficient due to diffusion, transport coefficient due to
gravity, crosslinking association rate, and crosslinking dissociation rate). A complete raw data set from the Model
consisted of about 7 concentration vs. time curves tracing out a binding and release experiment over 200 time points.
Experimentally it is only possible to measure the total # of bound Ag, not the valency of a bound Ag. Therefore, we
summed the curves to produce a single total bound concentration vs. time curve. We measured the performance of
the GA parameterization tool working with both complete data sets and reduced total bound data sets. The fitness

function calculated the sum of the least squares differences of data sets from a known individual (with a set of
preselected parameter values) and individuals in the population. Various supervisory programs were written to

39

gather statistical performance results over typically 20 or 30 fitting runs, and to display results. Also, a number of
metrics were defined to characterize the performance of the GA fitter (speed, accuracy, convergence) using different
sets of GA parameters, and for determining how the metrics behaved with scaling, e.g. as a function of population
sizes, maximum generations, etc.

We observed that fitting all six parameters to about 2% accuracy using complete data sets was easy using
populations of about 200 run for 1000 generations. This involved about 200,000 function evaluations and took
about 30 seconds. Times for fitting 5 parameters (without kg which hardly affects the data) were much better,
typically about 2 seconds. We also determined that varying the ranges over which parameter values were fit (from
2 to 4 to 10 times the parameter values) changed the average number of generations required to converge from 500
to 800 to 1250.

Fitting all 6 Model parameters simultaneously from total bound data sets proved to be much harder, with typically
only 10% of runs achieving <10% fitting errors. We are currently experimenting with a progressive GA (PGA)
parameter fitting strategy that mimics the progressive fitting strategy described in [2] to improve competence.

References

1. Zheng, Y.; Rundell, A., “Biosensor Immuno-surface Engineering Inspired by B-cell Membrane Bound Antibodies: Modeling
and Analysis of Multivalent Antigen Capture by Immobilized Antibodies, IEEE Transactions on NanoBioscience, 2(1):14-25,
2003.

2. Rundell, A.; DeCarlo, R.; Doerschuk, P.; HogenEsch, H.; “Parameter Identification for an Autonomous 11th Order Nonlinear
Model of a Physiological Process”, Proceedings of the 1998 American Control Conference, 6: 3585-3589, 1998.

40

S81n19811Y21y Bunndwod pasueapy

"866T ‘68GS-G8GE 9 ‘@IUBIBJUOD [0JIU0D URILIBWY 866T 8l JO SBUIPaadoId *,SS8201d [ed160]01SAUd
© JO [SPOJA JeaulJUON JapJQ YITT SNOWOoUOINy Ue 10J UOIIedlliusp| Jsisweled,, :'H .SOmm_cmmoI 'd Mnydsiaoq 'Y ‘opdedaq 'V ‘|Ispuny ‘¢
"£00Z ‘GZ-yT:(T)z ‘20UB10S0IGOUBN UO SuoNdesUelL 3331 'SeIpoquuY pazijiqowuw] A aimded usbiuy JusfeANIA
Jo w_w>_mc< pue mc__w_oo_)_ :$31poqiuy punog suelquuisin ||90-g >D _uwk__awc_ m:tww:_m:m_ adeuns-ounwwy| Josussolg,, v ,__wu:—._w_ CA »m:wr_N T
SISaUIUAS Aseiql] pJom apod eup ‘ABojoiq -S9Jualisjay
yum Buisuas pue Bunndwod ui soido) ‘ubissp euusjue 5135 UCREFIS53 395, L5 DU 3SR S LS SRS SEATRTRLL 10 SRR 2 R
‘sisAjeue Buibew! [esjoadsiadAy ‘uonisodwod ylomiau o
uelsaAeg ‘uonjelado pue ubisep aseqelep paIngLIsIp
79 Mdomiau ‘Y1 ‘Burnpayos ‘Butuueld ‘uoneziwndo
annoalgo-ninw :1salsul Jo swajgoud Jaylo 01 Ajdde - T

(g

"(#002 00039 Jaded Jaisod DIVSIA) paads ——————— e
J1oj 1915n]9 snouabolsiay pue ‘181sn|o ‘vOd4 01 Bullod - = ———
JUsWUOJIAUS
901ds-01g 84noa)ya.e Juabe uado 0} Buniod -
.V_LO>> CO|>>O__OH_ (vonemndod jafie) Ul @ sS4 3L LORAKCS Smﬁuq__l”Wn.uu...”L..mm._ﬂ
wEp Assou sssmds Bumy sousuucued pool Ss)insa) uoljenjeas ad>ueuwniojlad

DROUS (SOOI QREIT ZA UbM EISDL

L -

1010d 114 1S10M 79 UONRIBUSHG # 1AL UOIRUILIL] -
UoIoUNY SSBU1IJ 92UBIBYIP Sasenbs 1ses) -

L . suoneInw di) 11q ‘18A0SS0J WIOLIUN ‘WSS -
T RIS RS RERT / VO Jo} sanjeA auasl Jebisul 01
pajeos sis)awiesed [apow uoisioald ajgnop panjea jeal -
2491114 [9POIN/VD

s

uone|ndod feuy uonejndod Ajes

S19s elep asteds/Asiou/a1a|dwodul payoayl -
(syipim abuel “red #) Anoiyip wajqold patren -
Aoeanaoe ‘aousbianuod ‘paads paxyosyo -

sunJ Qg~ JaA0 SI1ISITEIS painseaw skemje -
:suoneziialoeaey) % siabeuepy uny

NPa UOSHIBIDDMABW ‘A1ISISAIUN UOSHIR|D ‘AR "N UIASY
[IW-ye a@spuing ‘@1eJd012a41g uonew.loyu| ‘A1oyeloqe] Yyoreasay 92404 A1y
paads J10j pasN ayl pue yoeoaddy wyrliob|y onnsuag v

:S99e4INS uo solweuAq bulpulg Apoqgnuy-uabiluy Jo s|apojN Bulziialawered uQ

19150d 500¢ ©OO049O

ADOTONH 3315

UeWINH-8s0d/31BIN 1 * LI4V/IUoWe "9 ‘anpand/|jspuny 'V

:slojeloqe]|0)

ANASONME JLUDITZ2

:s1osuods

Joyesado uewny yum paads sjgqeuoseal 1oy O 03 payod
S13S BJep [Ny yum Ajises [apow ||ny sy v -
Buimopuim ejep pue [spow

13p1o paonpai Buisn xoq [00) O-Uou yiIm Buiy op ueo -

Japow |ny Buisn abiaAu0d Jou piIp

- X0q 001 Uoleziwndo 9-uou a|gejieAe uo paseq Bumiy -

:S)nsay

weJboud wd4ywa uaiind e ul 1aafoad suo o snaoy -
sonsouBelp pue SI0SUssOIq J0) Pasu [eI1I1ID 0] JUBAS|3 -
$89JINS U0 salweuAp Buipulq qv-by -

|9poN-01g ase 1sa1 ay |

"pasedwod pue SJUSLUUOIIAUS 3IRMIJOS

994U} Ul USNIIIM J9M SUOIIN|OS "S3BLINS UO SIIWRUAD
Buipuiq qw-6y Buiqriosap suoienba [erualayip
AJeuiplo Jeaulj-uou pajdnod Jo 18s e Jo Bunsisuod
|opow-01q ased 158} e Buiziieieweled 1oy o ajdwis

® J0 douewopad ay sassnasip Jaded siyl :10v4ISY

suing ‘C |alueq

41

Appendix B. FNANO 2005 Paper

DNA Code Word Library Generation Using A Parallel Genetic Algorithm

Dan Burns and Kevin May, Air Force Research Lab, Morgan Bishop, JEANSEE Corp.,
Geneseo, NY.

The composition of DNA code word libraries useful for data storage, tethering to
surfaces, and self assembly applications is computationally intensive, and the time
required to discover large libraries increases as the number and complexity of constraints
aimed at controlling strand interaction increase. This poster paper describes a parallel
Genetic Algorithm (GA) for generating such libraries on a cluster of computers, and
compares its performance to that of Markov and Stochastic methods (see references on
poster).

The parallel GA utilizes multiple computer nodes in a cluster that effectively compete to
add the next good word pair to the library. Each node evolves candidates in separate or
“island model” populations that are different on each node. However, communication
among the nodes provides for sharing of new words found on one node by all nodes, and
also for “diffusion” of a few highly fit, but not yet “good” words from each node to the
next node around a ring loop. The method can be adapted to any set of constraints.

We tested the performance of the GA relative to a Markov method for the case of
composing libraries that satisfy both a minimum edit distance, measured by the
Levenstein matrix (Lv) and reverse code, i.e. both code words and their reverse
compliments are present (RC), constraints. Both methods performed similarly in terms
of the rate of finding words up to the point in time where the search becomes “difficult”.
We did observe that the Markov method was able to discover more words (131 pairs vs.
115 for a length 16, edit distance 10, Lv RC code, although at this writing we are not
certain whether this is due to longer total run time or the effects of early choices of words
for the library. (This point will be addressed before the meeting). Speed-up curves show
that both methods scale about linearly over the range of 1-30 processor nodes used.

We tested the performance of the GA relative to a Stochastic method, for the cases of
composing both 16/10 Lv RC codes and 8/4 Hamming Distance (HD) HD RC codes.
The GA is significantly faster up to the point where the search becomes “difficult”,
because it starts with an empty library and breeds candidates to possibly add, whereas the
Stochastic method starts with a full library and does mutations to improve constraint
satisfaction. Thus GA runs far fewer “checks” of constraints than Stochastic.

Finally, execution time profiling shows that most of the total time is spent evaluating the
Levenstein matrix, regardless of the method used (e.g. 98%+ for the GA). Since this is
an integer-only calculation, it could be implemented in an embedded FPGA. We intend
to do this in future work, and the poster will consider some details of this approach and
estimate expected the speed-up.

42

(supT/suo066) uoneluawsa|duwi

VY9d4 10} payafoid dn-paads X000T ~ uim ‘siabiajul Aluo
SBAJOAUI UONEINJED SIYL "XLTew uiglysusns ay) Bunenjers
juads s sauelql] 9pod DY A7 Buisodwod ajiym awi uoneindwod
8y} Jo +095/6 Inoge Jey) smoys Buiyoid awi] :}10A0 81ning

CEEOOEEO0EE000 5)

EoEEOECEOECEEE &)

T=2Z-- 00¢=M-- T-=S-- 000€=1-- 0T=W-- 000E=

-- 000€=I-- 00000T=D-- Op=9-- 9T=e-- 61 B BMO OF du-
unuidw yum uni) siossadoid Qg-GT ‘suni GT Jo Bae ‘spiom 00z
‘0T/9T 8P09 DA V9 Joj seaul Ajsrewixoiddy :dn-paads

Sum ysiuyy 0) Jossadoud 1Sy

punoy usym suone|ndod e
UM pareys aIe SpIom mau
:Sapou |[e uo Areiq| swes

syooda uonesauab oy

10 pua ay) ye Jossasoid
uadelpe ue o) paresBiw
are uonejndod s,J0ssa001d
4oe8 JO SfenpiAIpul G 1sag
:S[ENPIAIPUI 1S3Q § Yua

‘sAem € Ul syoelal Ing ‘uoneindod e sanjona
10ss9201d Yyoe3 "yo [9pOowW puels| :S|ielap UOISIaA [9|ered

86— 6¢ :sabed ‘Bunndwoo feIneN 200z 1das ‘T anss| ‘282

10/ *80U10S JaINAWID [B312108U L * UONEINAWOD JBINOBION-0Ig 10} UBISaQ PUBAIS, ‘UOPUOD 3 BUUY PUE UBIAUUBIG UBMIY

"200Z 3ung ‘(8yNQ)siandwo paseg

VNG U0 Bunsap [euoneusiul pIBI3 *,uBiSaQ PIOM VNG 10} SWUIOBIY U21ES [2907 ISBYI0S, ‘UOPUOD Y ‘SO0H “H ‘UedinL "0'a
02 10 P10/ 9) "966T BulILRIB0IG IBUBD UO BOLBIBJUCD [ENULY 1SS
41 0 SBUPRR0I ‘(SI0UPa) 1 X1 ‘0lORY PUE g PIReq ‘9505 “J PIRR "BIAGPIOS ¥ UL B2 ,'UONEINGLID PASES-YNG 10}
SBUIPOJUS B(GeIIa1 JO YIES AU, “If 'SUSKSIS 3 'S PUE ‘TISUISI0URI " 'q '350Y Y T AUdIN *D " "U0ZIeS ‘W ‘uoieaq "
852 -2vZ Sabed ‘666T ‘v ‘IO ‘20UBIS JaINAWI0D [20AI0Y | PUE SONBLIBYIEI B1R12SIQ Ul SaUSS SOVINIA ‘SIONP3

‘wieg °g 3 pue JagampuET ‘4 1 ‘966T '21-0T AUNC dOUSHOA SOVINI ‘Il SIBINdwo pases VNG "901d , Swalqoid [eofeuquios
01'SUOIN|OS Paseq-yYNQ 40} SBUIPOIUR P00, *IF 'SUBARIS '3 'S PUE MALISIOUEL Y “q 'UOZID W 'Audin "D "4 ‘uotead Y
°5002 Idy ‘5002 ONVN4 *.ubisaq Areiqr] piomapod VNG, ‘dousig "W ‘A03AY “A ‘DisiezoBod *M ‘Bindei v

(re1oyauaq y1) suoneinw aseq ajbuis ajqissod 1saq Jo (908) Anjiqeqoid ybiy -
(reroyauaq Ji) suoneinw aseq a|buls wopue. Jo (%02) Aujiqeqoid moj -

Aq spiom wopues Jo Areqi feniui -

*Z00Z ‘uopuo) ‘sooH ‘ued|ny uo paseq -

IS|1elap 10JeIBUID PIOM 3POD WYILIOB|Y d11SeyI0IS

o o N .
.
7 l\l\.\\u‘t s 2
e H

| |

1 vosot

J e ———

Semeial b T $4505 00 8 9 (00§ Gl OO

uosiedwod sauewI0IAd WYNIOBIY SISBUIUAS A%RIqI VNG

(Areiqi) wopuel paj|iy yum

USS S| BWI UNJ WYILIOB[E d1SEY0IS -
‘saelq) Aidwa

Ylm Lels ylog siurensuod juswijdwio) asianay pue xujely ulalysuana Ajuo buiyoays
‘SpIOM $TZ 40 Aresqi] 0T/9T Buipiing Arejiwis wiopad swyiuobly anauas) pue Aoy IeN -
is)nsay

SWEIS) 1UBIU0D puE 32IS Aleigi| WOopUel [e)

souesiq BulwweH aH
dwiod as10M81 0¥
Xy s AT

:s9dA1 3p00

ey

v | | o e g, e 1) B i o v B i g A
irmars nam 7 AR A ' e ' i R

*SPOyaW SEYI0IS PUe AOMIEA JO Tey Yum sdueuriopad sii
aredwod pue |00} uopeIauah piom apod wyob|y d1BUSS) pangusip e uawa|dw|
:yoeolddy

‘sdn-paads Buinaiyoe 1o} sayoeoidde
(v9d4) pappaqua [enuajod pue ‘sepod |9jiesed ‘swyioble aAneusale areneas
EVIGE](sTo)

‘Siuresisuod

YNoWIP 10w Yum spiom Jabuoj Jo sauelqi 1abire| 1oy Apuesiyiubls saseaioul
awn ubisaQ "anIsualul aINdWod S| SALRIGH PIOM 3p0d YNQ 3b1e| Jo uoneIsusD
wa|qoid

s

i

. o G

pUNOJ SPIOM [‘BWI}” Xew ‘Sush ™ Xew :elaid UoneulwId |
Ppamoj[e Jou :sauoj)
%T Anngeqoud ‘uonelnw aseq ajbuls s|qissod 1saq :uoneiny

e

sesajseemy Seewerajues

[Prr——

%02-0 Anpgeqold ‘1ano-ssouo juiod ajbuls yuared g :Bunepy
(yorew ™ xew-yoyew) pue (s1a30afal #) :uonouN- ssaull
(pauos si uonejndod) ssauly uo paseq :Buiew Joj uonIRS
Jossad0ud Jad Q0T :9zIs uone|ndod

:S|1ejap 101eIBUSD) PIOM SPOD WYILIOB|Y d11BuUsD

rje
‘AN ‘Wepsiod “TH-V 3 969]j0D uosielD ‘Kew uinai

wdoysiq ‘AN ‘09saua9 ‘dioD 33SNvIC ‘doysig uebiol ‘Npa uossied
e

[T

d31S0d S00¢ ONVNA

PSUING AN ‘awoy ‘Aloyeloge yoreasay 92104 iy ‘'suing °C [alueq

uBise@ Areaqi piomapod YNQ 404 WylI0b]y 2118UsD) [3|eled

43

Appendix C. GECCO 2005 Paper
DNA Code Word Library Generation Using

A Parallel Genetic Algorithm

Dan Burns
Air Force Research Laboratory
525 Brooks Road

Rome, NY 13441-4505
315-330-2335

burnsd@rl.af.mil

Kevin May

Clarkson College & AFRL
26 Electronic Parkway

Rome, NY 134441-4514
315-330-2335

maykn@clarkson.edu

Morgan Bishop
JEANSEE, Corp.
Geneseo, NY
315-330-1556

Morgan.Bishop@rl.af.mil

ABSTRACT

DNA code word libraries are useful for
implementing data storage and computation
schemes involving concatenated words with
‘sticky ends’ or tiles joined in predictable patterns
by means of ‘sticky edges’, for tethering bio-
molecules to surfaces in diagnostic and sensor
applications, as well as for self assembly of
nano-scale templates that may serve as precursors
for arraignment of other nano-scale devices.
Composing such libraries is computationally
intensive, with the time required to discover large
libraries increasing as the number and complexity
of constraints aimed at controlling strand
interaction increases. This poster paper describes
a parallel Genetic Algorithm (GA) for generating
such libraries on a cluster of computers, and
compares its performance to that of Markov and
Stochastic methods. A hardware implementation
is proposed for speeding up the time consuming
Levenstein Matrix ~ constraint checking
calculation.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques —
concurrent programming — Parallel
Programming

F.2.3 [Theory of Computing]: Computation by
Abstract Devices — Nonnumerical Algorithms
and Problems — sorting and searching

G.1.6 [Mathematics of Computing]: Numerical
Analysis — Optimization — constrained
optimization

General Terms
Algorithms, Performance, Design,
Experimentation.

44

Keywords
DNA, codes, word, library, genetic
EXTENDED ABSTRACT

The composition of DNA code word libraries
useful for data storage, tethering to surfaces, and
self assembly applications is computationally
intensive, and the time required to discover large
libraries increases as the number and complexity
of constraints aimed at controlling strand
interaction increase. This poster paper describes
a parallel Genetic Algorithm (GA) for generating
such libraries on a cluster of computers, and
compares its performance to that of Markov and
Stochastic methods (see references on poster).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

GECCO’05, June 25-29, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-010-8/05/0006...$5.00.

The parallel GA utilizes multiple computer nodes
in a cluster that effectively compete to add the
next good word pair to the library. Each node
evolves candidates in separate or “island model”
populations that are different on each node.
However, communication among the nodes
provides for sharing of new words found on one
node by all nodes, and also for “diffusion” of a
few highly fit, but not yet “good” words from
each node to the next node around a ring loop.
The method can be adapted to any set of code
word constraints.

We tested the performance of the GA relative to a
Markov method for the case of composing
libraries that satisfy both a minimum edit
distance, measured by the Levenstein matrix (Lv)
and reverse code (RC), i.e. both code words and
their reverse compliments are present, constraints.
Both methods performed similarly in terms of the
rate of finding words up to the point in time
where the search becomes “difficult”. We did
observe that the Markov method was able to
discover more words (131 word pairs vs 115) for
a length 16, edit distance 10, Lv RC code,
although at this writing we are not certain
whether this is due to longer total run time or the
effects of early choices of words for the library.
(This point will be addressed before the meeting).
Speed-up curves show that both methods scale
about linearly over the range of 1-30 processor
nodes used.

We tested the performance of the GA relative to a
Stochastic method, for the cases of composing
both 16/10 Lv RC codes and 8/4 Hamming
Distance (HD) RC codes. The GA is
significantly faster up to the point where the
search becomes “difficult”, because it starts with
an empty library and breeds candidates to
possibly add, whereas the Stochastic method
starts with a full library and does mutations to
improve constraint satisfaction. Thus GA runs
far fewer “checks” of constraints than Stochastic.

Finally, execution time profiling shows that most
of the total time is spent evaluating the
Levenstein matrix, regardless of the method used
(e.g. 98%+ for the GA). Since this is an integer-
only calculation, it could be implemented in an
embedded FPGA. We intend to do this in future
work, and the poster will consider some details of
this approach and estimate expected the speed-up.

45

‘VOd4 ue ul pajuawajdwi ag ued pue ‘siabajul Ajuo
SOAJOAUI UONEINDMeD SIYL XuUTew uIelysuanaT syl bunenjeas
1Iym awi uoreindwod
3y} Jo +94/6 INoge Jeyr smoys Buljyoid swil :}J0AA 21nINg

juads s| saleiql| 9pod DY A7 Buisodwod

EECOCEECOEECCD)
EECCCCECECRESE)

T=2-- 00g=M-- T-=S-- 000€=I-- OT=W-- 000E=A

-~ 000€=!-- 00000T=0-- Op=a-- 9T=e-- 6A" €6 BMD OF du-
unuidw yum uni) s1ossasold g-GT ‘suni GT Jo Bae ‘spiom 00z
‘0T/9T P02 DYAT VO Joy Jeau Ajgyewixoiddy :dn-paads

‘sAkem ¢ u| sjoelaul Ing ‘uoireindod e saAjona
J0ssa201d yoe3 "yo [9pOW pue|s| :S|e19p UOISIOA |9][esed

‘AN ‘Wepsiod T4V 3 863)j0D uosyie|d ‘Kew umey TiTei

wyiiob|y a1suas) |9jjeted v Buisn ubisa@ Aleiqi piomapod YNA

SuIm ysiuly 03 J0ssao0id 1Sy

punoy uaym suoirejndod |re
YIM paJeys aie SpIom mau

yoods uonessuab

0oy A1ana 1ossasoid
uadelpe ue 0} paresbiw
are uopendod s ossad0id
4oea JO S[enpIApuI § 1594

'8 — 6€ :sabed ‘Bunndwiod feinieN ‘200z 1das ‘T anss| ‘28z

“JOA '80ua19S JaIndwo [eanaioayl * uoneindwoD Jendajo-0ig o) ubisag puensS, ‘UOPUDD 'J BUUY PUe UBLIBUUSIEG USMIY
'200z aunr ‘(8v¥NQ)siaindwo) paseg

WNQ Uo Bunaa feuoneusaiul (yBI3 *,ubisad PIOM YNQ 10} SWILOB]Y UoIESS [2907 ANSBUIOIS, ‘UOPUOD Y ‘SO0H ‘H ‘UedinL "0'd
(9/0 10 Spi0M 9) "966T BulIURIBOIJ 93U UO B0UBIBJUOD [ENUUY ISII

By Jo sbupaasoid ‘(sioNpa) “7 %1y ‘ojory pue g piaeq ‘[@Bo4 3 pineq ‘B1agp|oo Y uyor ‘ezoy ,‘uoneINdwos paseq-yNQ 10}
SBUIPO2UD B[qRIII JO UoIBSS JHAUBD), “If 'SUBARIS T S PUB ‘MIBUdSaoURId Y ‘d ‘950y v ¢ ‘AUdIni O “ ‘UZIeS ‘W ‘Uotead ‘o
*852 -Lve sabed ‘666T ‘i 'JOA ‘90Ua1dS JaINdWo) [eNBI0BY L PUE SONRWAYIRN 81819sId Ul SBUSS SOVINIA 'sionp3

‘wneg °g "3 pue Jagampuen] "4 7] ‘9661 ‘ZT-0T dune dousLOM SOVINIQ ‘Il S1andwoD pased YNQ 90id ,'SWajqoid [euoreuiquiod
01 SUONNOS PasEq-YNG 10} SBUIPOOUa P00, “If 'SUBASIS '3 'S PUE ‘MaYISaoURIS Y ‘d “U0ZIeD ‘W 'Audini -0 - ‘uoread "y
'500Z IdY ‘500z ONVN4 *,ubisa@ Areiqr] piomapod YNQ, ‘dousig ‘I ‘AoXAY “A ‘Disiezobod M "BInden v

(re1ayyauaq y1) suonenw aseq a|buls ajqissod 1saq Jo (%608) Anligeqoud ybiy -

suonenw Aq panoiduwi spiom arepipued wopuel jo Areld| (el
2002 ‘uopuo) ‘sooH ‘ued|n] uo paseq -
Is|Ie1ap 101eIaUdD PIOA SP0D WyloB|y o11seys01s

o5 8 90 €1 ve |
00T OB 108 6T ET VO —e— 1005 MOGT 05 0T £TATYD —%—000T MOAT 0 U £14™v0 o
w0se 19dor 10 "v —— P T — 0 ot 1 vo —— |

puno sprom s
out oot o i

=
5

a0t

(05)oun

evsa0t

|

soa0t

105539010 T Ul SUNA OE J0 SABRIINE AJ© INSEUDDIS PUE VO
S3LIIQI] P10 0T 'S3P03 DX GH "b UIPW ‘g IBU] piom
UoS1RdWOD 9UBWI0LIAd WIUIIOBTY SISUIAS K1eJqI YN

(Areiqy) wopues pajjy ynm
SUEIS) JUSIUOD pue 82is Arelql] WOPUEJ [eriul 0} SANISUSS S| 8wl uni wiobe anseyoo)s -

Yim Jels ylog ‘siurensuod juswi QEOU BSI9A3Y pue XUIeW UIBiysusna] >_._._O m_.__v_um_._u
‘'spiom tTg o Areiqll 0T/9T Buipiing Apejiwus wiopad swyiloBly 118U pue AosIep -

punoj spiom s
00t oot o T
i 20301

booo" 30T

001307

soueysig BulwweH aH

06301

(035) 2w

XUTBW UISIYSUBAST INAT wdsrvo—=— |t 20430

:sadA| apod

el VO —s— T drus ——
c0r30T

JsTOr e st doT i —e—
vor30T

sor30T

2040 T UNI T 4o01s '(901d T pue T) “BAE Uni 0 O ‘BrE NI ST AN
oLl P10/ ¥TZ 'SAP0D O A7 ‘DT UOIEW T WbUS| plom

uostedwod 8ouewI0jad WUILOBY SISAIUAS A1 YNG

‘'Spoylaw J1SeYI0IS pue AOXIBIN JO Tyl Yim aduewlopad s
aredwod pue |00} uonelaual piom apod WyIoB|y dnausD pangusip e uawajdw|
:yoeosddy

‘sdn-paads Buinaiyoe o} sayoeoidde
(V9d4d) pappaqua enuajod pue ‘sapod |gfesed ‘swyiioble aaeusa)e ayenjeng
:8A198[q0o

‘S)Uressuod
JNOIYIP S10W Yum splom 1aBuoj jo saurelqi| Jabie| 1oy Apuesyiubis sasealoul
ISe@ "dAISualul aNdWOI S| SaleIql| pIom 3pod YNQ abue| Jo uonesaus
‘wa|qold

wdoysiq ‘AN ‘ossaus9 “dioD 33SNvAr ‘doysig ueblo ‘P LoSy D@ UsABW

191S0d G00¢ OO39

PSUING AN ‘awoy ‘AloyesoqeT] yoreasay 92104 Iy ‘suing ° [aiueq

Ee) Ex; ®Wa)

punoy

SPIOM [[e ‘BwI} Xew ‘suonelausb Xew ‘eusid uoneulwls |
pamojje jou :sauo|)

%T Aljiqeqoid ‘uoirelnw aseq ajBuls a|qissod 1saq :uoneIniy

9%02-0 Anjigeqoud ‘1ano-ssouo juiod ajbuis uared g :Bunep
(yorew xew-yorew) pue (s1a103fal #) :uonoun ssaull4
(pauos si uonejndod) ssauyy uo paseq :Buiyew 1o} UoRISIBS
Jossaooud Jad QT :9zIs uone|ndod
'S|1e1ap J0JeIaUSD PIOA BP0 WYlIoB|Y 18U

46

